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Scientific question

How to reduce the complexity of the t-SNE algorithm?



Outline

Background
Algorithm
Summary

Discussion



What is t-SNE?

(three slides from Aug 22 2019 talk)
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t-SNE analysis of 60,000 single cells sampled from the Mouse Cell Atlas

tSNE 2

t-SNE has been widely used in biomedical research
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Han et al., Cell, 2018



t-SNE preserves the local structure of the high-dimensional data

* Measure pairwise similarities between high-dimensional and low-dimensional objects
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https://www.slideshare.net/ssuserb667a8/visualization-data-using-tsne



What is interpolation?



Background

« How to provide a reasonable estimate of the population in 1975?
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Population 151,326 179,323 203,302 226,542 249,633 281,422
(in thousands)



Interpolation

Interpolation is a type of estimation, a method of constructing new data points within the range of
a discrete set of known data points.
Given a number of data points, obtained by sampling or experimentation, which represent the values of a
function for a limited number of values of the independent variable.
* Itis often required to interpolate, i.e., estimate the value of that function for an intermediate value of

the independent variable.
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Interpolation

* Sowe have y; = f(x;) at n + 1 points x,, Xy, ..., Xj, ..., Xp and x; > x;_4

* (often but not always evenly spaced)

In general, we do not know the underlying function f(x)

 Conceptually, interpolation consists of two stages:

Develop a simple function P(x) that

* Approximates f(x) .

Passes through all the points x;

Evaluate f(x;) where xo < x; < x,,

Wikipedia
Roger Crawfis



Interpolation vs. Regression

Different approaches depending on the quality of the data

extrapolate

@
extrapolate o

Interpolation Regression

* Pretty confident: there is a polynomial relationship  * Unsure what the relationship is

* Little/no scatter e Clear scatter

«  Want to find an expression that passes exactly « Want to find an expression that captures the trend:

through all the points minimize some measure of the error of all the points...

Credit to Roger Crawfis



Why using polynomials in function approximation?

« Uniformly approximate continuous functions (Weierstrass approximation theorem)
» The derivative and indefinite integral of a polynomial are easy to determine and are also

polynomials
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Definitions from calculus

The limit statement lim f(x) = L means that for any € > 0, there isa § > 0 such that |f(x) — L| < ¢

xX—a

whenever 0 < |x — a| < 6.

A function f is continuous at x if 111irr(1) f(x+ h) = f(x).

If ]llirr(l) % [f (x + h) — f(x)] exits, it is denoted by f'(x) or %f(x) and is termed the derivative of f at x.



Weierstrass approximation theorem

Suppose that f is defined and continuous on [a, b]. For each € > 0, there exists a polynomial P(x),

with the property that
If(x) — P(x)| <€, for all x in [a, b]

Given any function, defined and continuous on a closed and bounded interval, there exists a

polynomial that is as “close” to the given function as desired

Polynomials:

P,(x) =a,x"+a,_x" 1+ +a;x+a,

where n is a nonnegative integer and ay, ..., a,, are real constants.

Numerical Analysis



Polynomial interpolation

* Existence — does there exist a polynomial that exactly passes through

the n + 1 data points?

 Uniqueness — Is there more than one such polynomial?

Credit to Roger Crawfis



Existence of polynomial interpolation

« Summation of terms, such that:
* Equal to f(x) at a data point
 Equal to zero at all other data points

» Each term is a n't-degree polynomial
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Credit to Roger Crawfis



Formally expressed as a theorem

* Ifxy,xq, ..., x, are n + 1 distinct numbers and f is a function whose values are given at these

numbers, then a unique polynomial P(x) of degree at most n exists with

f(x;) = P(x;), foreachi =0,1,...,n

 This polynomial is given by

PG = fo)Lo() + -+ F()ln() = ) LiGOf ()
1=0

* where, foreachi =0,1,...,n,

(x = x0)(x — x1) oo (X — 23_1) (¢ — Xi41) o (x — Xp) nl (x — x)

Li(x) = (x; — x0) (g — x1) o (6 — 2x—1) (X3 — X41) oo (X — Xp) B k=0,jci (xi — xk)

Numerical Analysis



A sketch of the graph of a typical L;(x) (when n is even)
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Linear interpolation

« Summation of two lines:

P00 = ) Lif(x)
1=0

= T () + T2 f (xy)

 (xp—x1) (x1—Xo)

Credit to Roger Crawfis



Lagrange polynomials

« 2nd order case => quadratic polynomials
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Untangling the t-SNE algorithm



t-distributed stochastic neighbor embedding (t-SNE)

Given a d-dimensional dataset X = {xq, x5, ..., xy} € R%, t-SNE aims to compute the
low-dimensional embedding

V'={vy2 . yn} c R
where s < d, such that if two points x; and x; are close in the input space, then their
corresponding points y; and y; are also close. Affinities between points and in the

input space, p;;, are defined as
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where g; is the bandwidth of the Gaussian distribution



t-distributed stochastic neighbor embedding

* Similarly, the affinity between points y; and y; in the embedding space is defined

using the Cauchy kernel

Gii = @+ [y -y
D W G B o | 1 D e

* t-SNE finds the points {y4, 5, ..., Yy} that minimize the Kullback-Leibler (KL) divergence
between the joint distribution of points in the input space P and the joint distribution of the

points in the embedding space Q,

Dij
CY)=KLPP Q) =) p;ilog—2
(¥) = KL(P I Q) progqi,.

I#]



t-SNE preserves the local structure of the high-dimensional data

* Measure pairwise similarities between high-dimensional and low-dimensional objects
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https://www.slideshare.net/ssuserb667a8/visualization-data-using-tsne



t-distributed stochastic neighbor embedding

Starting with a random initialization, the cost function C(Y) is minimized by gradient descent,

with the gradient
aC

Fwie 4Z(pij — 4i1)qi;Z(yi — ¥))
i J#i

where Z is a global normalization constant

2=+ llye =yl

k+l

We split the gradient into two parts

1 ac )
13y, zpijCIijZ(Yi —Yj) — 2 qi;Z(yi — ¥;j)

J#i J#L

attractive force between points\ / repulsive force between points
10C

Za_yl — Fattr,i — Frep,i



Computation complexity of t-SNE

« The computation of the gradient at each step is an N-body simulation, where the position of each

point is determined by the forces exerted on it by all other points.

« Exact computation of N-body simulations scales as O(N?), making exact t-SNE computationally

prohibitive for datasets with tens of thousands of points.

10C 2
Ta = E PijqiiZ (Vi — ¥j) — E qi;Z(yi — yj)
40y; £ —
j#i j#i
19c

Za_yl - Fattr,i - Frep,i



Computation complexity of t-SNE

 The attractive force between two points decays exponentially fast as a function of the distance
between them, so that a point exerts a significant attractive force only on its nearest neighbors.

* Only nearest neighbors need to be considered when calculated Fg¢-;

« Computation of Fy.¢, ; is the most time-consuming step in t-SNE
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Accelerating computation of repulsive forces in FIt-SNE

Recall that {y4, y,, ..., yn} is the s-dimensional embedding of a collection of d-dimensional vectors

{x1, x5, ..., xy}. At each step of gradient descent, the repulsive forces are given by

N yi(m) —y;(m)
LA Al = yall*)?
1

2
L+ v =)

wherei =1,2,..,N;m=1,2,..,s; and y;(j) denotes the jth component of y;.

Frep,i (m) =

N N
j=1 Zl=1,l¢j(

Evidently, the repulsive force between the vectors {y;, v,, ..., yn} consists of N2 pairwise interactions,

and were it computed directly, it would require CPU time scaling as O(N?).



The authors proposed an approach enabling the computation

in O(N) time



Accelerating computation of repulsive forces in FIt-SNE

N yi(m) — y;(m)
LT+ Ty = i)

NN S
1+ -yl

Frep,i (m) =

* By observation:

« the repulsive forces Frep; defined in the above equation can be expressed as sums of the form

N
b)) = z K(vi,z)4q;
=1

* where the kernel K(y, z) is either

1

Kl()’; Z) — (1+|ly—-z|2) or KZ()’; Z) —

1
(1+]ly—z||*)?

« for y,z € R’. Note that both of the kernels K; and K, are smooth functions of y,z for all y,z € R5 .



Using polynomials to approximate kernels

* Let p be a positive integer. Suppose that Z;, ..., Z, are a collection of p points on the
interval I, and that ¥4, ..., ¥, are a collection of p points on the interval I, .

* Let K;,(y, z) denote a bivariate polynomial interpolant of the kernel K(y, z)

satisfying
K,(5,2)=K(5,2), Jjl=12,,..,p



Using polynomials to approximate kernels

K,(5,2) =K(3;,21), Jjl=12,,..,p

* Asimple calculation shows that K, (y, z) is given by

b P
Ko 2) = ) > K(32) Ljs0Lia(2)
=1 j=1

« where L; 5(y) and L; z(z) are the Lagrange polynomials

=)
1_[( ~] and le(z)— — =
Vi —

j=1,j#l j=1,j#l

* wherel =1,2,...,p. In the following, we refer to the points ¥;, ., Vpand Zy, ..., Z, as

interpolation points.



Previous slide Formal expressed as a theorem

If x4, x4, ..., X are n + 1 distinct numbers and f is a function whose values are given at these

numbers, then a unique polynomial P(x) of degree at most n exists with
f(x;) = P(x;), foreachi =0,1,...,n

This polynomial is given by

PG = fo)Lo() + -+ F()ln() = ) LiGOf ()
1=0

where, foreachi =0,1, ..., n,

(x = x0)(x — x1) oo (X — 23_1) (¢ — Xi41) o (x — Xp) nl (x — x)

Li(x) = (x; — x0) (g — x1) o (6 — 2x—1) (X3 — X41) oo (X — Xp) B k=0,jci (xi — xk)

Numerical Analysis



Using polynomials to approximate kernels

N
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« Let ¢(y;) denote the approximation to ¢ (y;) obtained by replacing the kernel K in

the above equation by its polynomial interpolant K,,, that is,
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Analysis of the computation complexity

« The direct computation of ¢(y,), ..., ¢ (yy) requires O(N?) operations. In comparison, the values of

d(y1), ..., p(yy) can be computed in O(2N - p + p?).
N
(i) = z Ky (i 2)q;
j=1
N p p
= 7 7 7 K&, Zn)liy )Lz (2)q;

j=11=1m=1

p p N
= z Liy ) (Z K31, Zm) (Z Lz (zj)qj>> fori =1,2,..,N
=1 m=1 Jj=1

O(N - p) 0(p%) O(N - p)




An illustration of the algorithm

* In the lower intervals, the white squares denote the locations z; and y;, and in the upper intervals the white

circles indicate the locations of the equispaced nodes Z and . The arrows illustrate how a point z;

communicates with a point y;.
Step 2
\
4

IO 3]

Step 1




Experimental results



The computation complexity is remarkably reduced

Table 1| Time taken for 1,000 iterations of the gradient

descent phase of 2D t-SNE using BH t-SNE compared to our
implementation (FIt-SNE), as compared on a 2017 Macbook Pro
for a given number of points N

4 )
N BH t-SNE FIt-SNE
10,000 Tmin <Tmin
100,000 1T min <1min
500,000 1Th 10 min 3min
1,000,000 3h9min 15 min

See the Methods for more details.



Identifying subpopulations in a large dataset by
using marker genes

Full dataset b Random 50,000 cells

%

Cell type ® GABAergic subtype (Sncg, Sic17a8) @ VLMC subtype (Spp1, Col15a1)



Summary

Identification of the most time-consuming part in the t-SNE algorithm

I

Recognition of the computation problem as

polynomial interpolation

4

Problem solved



Discussion

Find your question
Find your approach

Don’t settle
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