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How to reduce the complexity of the t-SNE algorithm?

Scientific question
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What is t-SNE?
（three slides from Aug 22 2019 talk）



http://www.cs.toronto.edu/~hinton/absps/tsne.pdf

Geoffrey E. Hinton

https://awards.acm.org/about/2018-turing

Published: 2008



Han et al., Cell, 2018

• t-SNE analysis of 60,000 single cells sampled from the Mouse Cell Atlas

t-SNE has been widely used in biomedical research



https://www.slideshare.net/ssuserb667a8/visualization-data-using-tsne

• Measure pairwise similarities between high-dimensional and low-dimensional objects

t-SNE preserves the local structure of the high-dimensional data



What is interpolation?



Background

• How to provide a reasonable estimate of the population in 1975?



Interpolation

• Interpolation is a type of estimation, a method of constructing new data points within the range of 

a discrete set of known data points.

• Given a number of data points, obtained by sampling or experimentation, which represent the values of a 

function for a limited number of values of the independent variable.

• It is often required to interpolate, i.e., estimate the value of that function for an intermediate value of 

the independent variable.

Wikipedia



Interpolation

• So we have 𝑦! = 𝑓(𝑥!) at 𝑛 + 1 points 𝑥" , 𝑥#, … , 𝑥! , … , 𝑥$ and 𝑥% > 𝑥%&#
• (often but not always evenly spaced)

• In general, we do not know the underlying function 𝑓(𝑥)

• Conceptually, interpolation consists of two stages:

• Develop a simple function 𝑃(𝑥) that

• Approximates 𝑓(𝑥)

• Passes through all the points 𝑥!
• Evaluate 𝑓(𝑥')where 𝑥( < 𝑥' < 𝑥$

Wikipedia
Roger Crawfis



Interpolation vs. Regression 
• Different approaches depending on the quality of the data

interpolate

extrapolate

extrapolate

• Pretty confident: there is a polynomial relationship

• Little/no scatter

• Want to find an expression that passes exactly

through all the points 

• Unsure what the relationship is

• Clear scatter

• Want to find an expression that captures the trend:

minimize some measure of the error of all the points… 

Interpolation Regression

Credit to Roger Crawfis



Why using polynomials in function approximation?

• Uniformly approximate continuous functions (Weierstrass approximation theorem)

• The derivative and indefinite integral of a polynomial are easy to determine and are also 

polynomials

Numerical Analysis



Definitions from calculus

• The limit statement lim
)→+

𝑓(𝑥) = 𝐿 means that for any 𝜀 > 0, there is a δ > 0 such that 𝑓 𝑥 − 𝐿 < 𝜀

whenever 0 < 𝑥 − 𝑎 < 𝛿.

• A function 𝑓 is continuous at 𝑥 if lim
,→(

𝑓(𝑥 + ℎ) = 𝑓(𝑥).

• If lim
,→(

#
,
[𝑓 𝑥 + ℎ − 𝑓(𝑥)] exits, it is denoted by 𝑓-(𝑥) or .

.)
𝑓(𝑥) and is termed the derivative of 𝑓 at 𝑥.



Weierstrass approximation theorem
• Suppose that 𝑓 is defined and continuous on 𝑎, 𝑏 . For each 𝜖 > 0, there exists a polynomial 𝑃(𝑥),

with the property that

𝑓 𝑥 − 𝑃(𝑥) < 𝜖, for all 𝑥 in 𝑎, 𝑏

• Given any function, defined and continuous on a closed and bounded interval, there exists a 

polynomial that is as “close” to the given function as desired

𝑃! 𝑥 = 𝑎!𝑥! + 𝑎!"#𝑥!"# +⋯+ 𝑎#𝑥+ 𝑎$

• Polynomials:

where 𝑛 is a nonnegative integer and 𝑎(, … , 𝑎$ are real constants.

Numerical Analysis



Polynomial interpolation

• Existence – does there exist a polynomial that exactly passes through 

the 𝑛 + 1 data points?

• Uniqueness – Is there more than one such polynomial?

Credit to Roger Crawfis



Existence of polynomial interpolation

• Summation of terms, such that:

• Equal to 𝑓 𝑥 at a data point

• Equal to zero at all other data points

• Each term is a 𝑛AB-degree polynomial

𝑃! 𝑥 =6
%&$

!

𝐿% 𝑥 𝑓(𝑥%)

𝐿% 𝑥 = 8
'&$,')%

!
(𝑥 − 𝑥')
(𝑥% − 𝑥')

𝐿% 𝑥* = 𝛿%* = :1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

Credit to Roger Crawfis



Formally expressed as a theorem
• If 𝑥" , 𝑥#, … , 𝑥$ are 𝑛 + 1 distinct numbers and 𝑓 is a function whose values are given at these 

numbers, then a unique polynomial 𝑃(𝑥) of degree at most 𝑛 exists with

𝑓 𝑥C = 𝑃 𝑥C , for each 𝑖 = 0, 1, … , 𝑛

• This polynomial is given by

𝑃 𝑥 = 𝑓 𝑥D 𝐿D 𝑥 +⋯+ 𝑓 𝑥E 𝐿E 𝑥 =5
CFD

E

𝐿C 𝑥 𝑓(𝑥C)

• where, for each 𝑖 = 0, 1, … , 𝑛,

𝐿C 𝑥 =
𝑥 − 𝑥D 𝑥 − 𝑥H … 𝑥 − 𝑥CIH 𝑥 − 𝑥CJH …(𝑥 − 𝑥E)

𝑥C − 𝑥D 𝑥C − 𝑥H … 𝑥C − 𝑥CIH 𝑥C − 𝑥CJH …(𝑥C − 𝑥E)
= 9

KFD,KLC

E
(𝑥 − 𝑥K)
(𝑥C − 𝑥K)

Numerical Analysis



𝐿! 𝑥 =
𝑥 − 𝑥" 𝑥 − 𝑥# … 𝑥 − 𝑥!$# 𝑥 − 𝑥!%# …(𝑥 − 𝑥&)

𝑥! − 𝑥" 𝑥! − 𝑥# … 𝑥! − 𝑥!$# 𝑥! − 𝑥!%# …(𝑥! − 𝑥&)
= (

'(",'*!

&
(𝑥 − 𝑥')
(𝑥! − 𝑥')

Numerical Analysis

A sketch of the graph of a typical 𝑳𝒊 𝒙 (when 𝒏 is even)



Credit to Roger Crawfis

Linear interpolation

x0 x1

• Summation of two lines:

𝑃# 𝑥 =6
%&$

#

𝐿% 𝑥 𝑓(𝑥%)

= (,",!)
(,"",!)

𝑓(𝑥$) + (,",")
(,!",")

𝑓(𝑥#)



• 2nd order case => quadratic polynomials

Lagrange polynomials

Credit to Roger Crawfis



Untangling the t-SNE algorithm



t-distributed stochastic neighbor embedding (t-SNE)

• Given a 𝑑-dimensional dataset 𝑋 = {𝑥!, 𝑥", … , 𝑥#} ⊂ ℝ$, t-SNE aims to compute the 

low-dimensional embedding

𝑌 = {𝑦!, 𝑦", … , 𝑦#} ⊂ ℝ%

• where 𝑠 ≪ 𝑑, such that if two points 𝑥& and 𝑥' are close in the input space, then their

corresponding points 𝑦& and 𝑦' are also close. Affinities between points and in the

input space, 𝑝&', are defined as

𝑝&|' =
exp −

𝑥& − 𝑥'
"

2𝜎&"

∑)*' exp − 𝑥& − 𝑥) "

2𝜎&"

and 𝑝&' =
𝑝&|' + 𝑝'|&

2𝑁

• where 𝜎& is the bandwidth of the Gaussian distribution



t-distributed stochastic neighbor embedding

• Similarly, the affinity between points 𝑦& and 𝑦' in the embedding space is defined 

using the Cauchy kernel

𝑞&' =
(1 + 𝑦& − 𝑦'

"
)+!

∑)*,(1 + 𝑦) − 𝑦, ")+!

• t-SNE finds the points {𝑦!, 𝑦", … , 𝑦#} that minimize the Kullback–Leibler (KL) divergence 

between the joint distribution of points in the input space 𝑃 and the joint distribution of the 

points in the embedding space 𝑄,

𝐶 𝑌 = KL 𝑃 ∥ 𝑄 =P
&*'

𝑝&' log
𝑝&'
𝑞&'



https://www.slideshare.net/ssuserb667a8/visualization-data-using-tsne

• Measure pairwise similarities between high-dimensional and low-dimensional objects

t-SNE preserves the local structure of the high-dimensional data



t-distributed stochastic neighbor embedding

• Starting with a random initialization, the cost function 𝐶 𝑌 is minimized by gradient descent, 

with the gradient
𝜕𝐶
𝜕𝑦&

= 4P
'*&

𝑝&' − 𝑞&' 𝑞&'𝑍(𝑦& − 𝑦')

• where 𝑍 is a global normalization constant

𝑍 =N
/01

(1 + 𝑦/ − 𝑦1 2)&#

• We split the gradient into two parts

1
4
𝜕𝐶
𝜕𝑦&

=P
'*&

𝑝&'𝑞&'𝑍(𝑦& − 𝑦') −P
'*&

𝑞&'" 𝑍(𝑦& − 𝑦')

attractive force between points repulsive force between points

1
4
𝜕𝐶
𝜕𝑦&

= 𝐹-../,& − 𝐹/12,&



Computation complexity of t-SNE

• The computation of the gradient at each step is an 𝑁-body simulation, where the position of each 

point is determined by the forces exerted on it by all other points.

• Exact computation of 𝑁-body simulations scales as 𝑂(𝑁"), making exact t-SNE computationally 

prohibitive for datasets with tens of thousands of points.

1
4
𝜕𝐶
𝜕𝑦&

=P
'*&

𝑝&'𝑞&'𝑍(𝑦& − 𝑦') −P
'*&

𝑞&'" 𝑍(𝑦& − 𝑦')

1
4
𝜕𝐶
𝜕𝑦&

= 𝐹-../,& − 𝐹/12,&



Computation complexity of t-SNE

1
4
𝜕𝐶
𝜕𝑦&

=P
'*&

𝑝&'𝑞&'𝑍(𝑦& − 𝑦') −P
'*&

𝑞&'" 𝑍(𝑦& − 𝑦')

1
4
𝜕𝐶
𝜕𝑦&

= 𝐹-../,& − 𝐹/12,&

• The attractive force between two points decays exponentially fast as a function of the distance 

between them, so that a point exerts a significant attractive force only on its nearest neighbors.

• Only nearest neighbors need to be considered when calculated 𝐹-../,&

• Computation of 𝐹/12,& is the most time-consuming step in t-SNE

𝑝&|' =
exp −

𝑥& − 𝑥'
"

2𝜎&"

∑)*' exp − 𝑥& − 𝑥) "

2𝜎&"

and 𝑝&' =
𝑝&|' + 𝑝'|&

2𝑁



Accelerating computation of repulsive forces in FIt-SNE

• Recall that {𝑦!, 𝑦", … , 𝑦#} is the 𝑠-dimensional embedding of a collection of 𝑑-dimensional vectors

{𝑥!, 𝑥", … , 𝑥#}. At each step of gradient descent, the repulsive forces are given by

𝐹YZ[,% 𝑚 =
∑\&#,\)%] 𝑦\ 𝑚 − 𝑦%(𝑚)

1 + 𝑦\ − 𝑦% ^ ^

∑*&#] ∑\&#,\)*] 1
1 + 𝑦\ − 𝑦*

^

• where 𝑖 = 1, 2, … , 𝑁;𝑚 = 1, 2, … , 𝑠; and 𝑦& 𝑗 denotes the 𝑗th component of 𝑦&.

• Evidently, the repulsive force between the vectors {𝑦!, 𝑦", … , 𝑦#} consists of 𝑁" pairwise interactions, 

and were it computed directly, it would require CPU time scaling as 𝑂(𝑁").



The authors proposed an approach enabling the computation

in 𝑶(𝑵) time



Accelerating computation of repulsive forces in FIt-SNE

𝐹OPQ,C 𝑚 =
∑RFH,RLCS 𝑦R 𝑚 − 𝑦C(𝑚)

1 + 𝑦R − 𝑦C T T

∑UFHS ∑RFH,RLUS 1
1 + 𝑦R − 𝑦U

T

• By observation:

• the repulsive forces 𝐹345,& defined in the above equation can be expressed as sums of the form

𝜙 𝑦C =5
UFH

S

𝐾 𝑦C, 𝑧U 𝑞U

• where the kernel 𝐾(𝑦, 𝑧) is either

𝐾H 𝑦, 𝑧 = H
HJ VIW ! or 𝐾T 𝑦, 𝑧 = H

HJ VIW ! !

• for 𝑦, 𝑧 ∈ ℝ%. Note that both of the kernels 𝐾! and 𝐾" are smooth functions of 𝑦, 𝑧 for all 𝑦, 𝑧 ∈ ℝ% .



Using polynomials to approximate kernels

• Let 𝑝 be a positive integer. Suppose that �̃�H, … , �̃�X are a collection of 𝑝 points on the

interval 𝐼W" and that E𝑦H, … , E𝑦X are a collection of 𝑝 points on the interval 𝐼V" .

• Let 𝐾X 𝑦, 𝑧 denote a bivariate polynomial interpolant of the kernel 𝐾 𝑦, 𝑧

satisfying
𝐾e E𝑦* , �̃�\ = 𝐾 E𝑦* , �̃�\ , 𝑗, 𝑙 = 1,2, , … , 𝑝



Using polynomials to approximate kernels

𝐾X E𝑦U, �̃�R = 𝐾 E𝑦U, �̃�R , 𝑗, 𝑙 = 1,2, , … , 𝑝

• A simple calculation shows that 𝐾X 𝑦, 𝑧 is given by

𝐾X 𝑦, 𝑧 =5
RFH

X

5
UFH

X

𝐾 E𝑦U, �̃�R 𝐿U, YV 𝑦 𝐿R, YW(𝑧)

• where 𝐿U, YV 𝑦 and 𝐿R, YW(𝑧) are the Lagrange polynomials

𝐿U, YV 𝑦 = 9
UFH,ULR

X
(𝑦 − E𝑦U)
( E𝑦R − E𝑦U)

and 𝐿R, YW(𝑧) = 9
UFH,ULR

X
(𝑧 − �̃�U)
(�̃�R − �̃�U)

• where 𝑙 = 1, 2, … , 𝑝. In the following, we refer to the points E𝑦H, … , E𝑦X and �̃�H, … , �̃�X as

interpolation points.



Formal expressed as a theorem
• If 𝑥" , 𝑥#, … , 𝑥$ are 𝑛 + 1 distinct numbers and 𝑓 is a function whose values are given at these 

numbers, then a unique polynomial 𝑃(𝑥) of degree at most 𝑛 exists with

𝑓 𝑥C = 𝑃 𝑥C , for each 𝑖 = 0, 1, … , 𝑛

• This polynomial is given by

𝑃 𝑥 = 𝑓 𝑥D 𝐿D 𝑥 +⋯+ 𝑓 𝑥E 𝐿E 𝑥 =5
CFD

E

𝐿C 𝑥 𝑓(𝑥C)

• where, for each 𝑖 = 0, 1, … , 𝑛,

𝐿C 𝑥 =
𝑥 − 𝑥D 𝑥 − 𝑥H … 𝑥 − 𝑥CIH 𝑥 − 𝑥CJH …(𝑥 − 𝑥E)

𝑥C − 𝑥D 𝑥C − 𝑥H … 𝑥C − 𝑥CIH 𝑥C − 𝑥CJH …(𝑥C − 𝑥E)
= 9

KFD,KLC

E
(𝑥 − 𝑥K)
(𝑥C − 𝑥K)

Numerical Analysis

Previous slide



Using polynomials to approximate kernels

• Let K𝜙(𝑦C) denote the approximation to 𝜙(𝑦C) obtained by replacing the kernel 𝐾 in

the above equation by its polynomial interpolant 𝐾X, that is,

K𝜙 𝑦C =5
UFH

S

𝐾X 𝑦C, 𝑧U 𝑞U , for 𝑖 = 1, 2, … ,𝑁

𝜙 𝑦C =5
UFH

S

𝐾 𝑦C, 𝑧U 𝑞U 𝐾H 𝑦, 𝑧 = H
HJ VIW ! or 𝐾T 𝑦, 𝑧 = H

HJ VIW ! !

𝐾X 𝑦, 𝑧 =5
RFH

X

5
UFH

X

𝐾 E𝑦U, �̃�R 𝐿U, YV 𝑦 𝐿R, YW(𝑧)

𝐿R, YW(𝑧) = 9
UFH,ULR

X
(𝑧 − �̃�U)
(�̃�R − �̃�U)

𝐿U, YV 𝑦 = 9
UFH,ULR

X
(𝑦 − E𝑦U)
( E𝑦R − E𝑦U)



K𝜙 𝑦C =5
UFH

S

𝐾X 𝑦C, 𝑧U 𝑞U

=P
'6!

#

P
,6!

2

P
76!

2

𝐾 f𝑦,, �̃�7 𝐿,, 89 𝑦& 𝐿7,8: 𝑧' 𝑞'

=P
,6!

2

𝐿,, 89 𝑦& P
76!

2

𝐾 f𝑦,, �̃�7 P
'6!

#

𝐿7,8: 𝑧' 𝑞'

𝑶(𝑵 k 𝒑)𝑶(𝒑𝟐)𝑶(𝑵 k 𝒑)

Analysis of the computation complexity

for 𝑖 = 1, 2, … , 𝑁

• The direct computation of 𝜙 𝑦# , … , 𝜙 𝑦3 requires 𝑶(𝑵𝟐) operations. In comparison, the values of

]𝜙 𝑦# , … , ]𝜙 𝑦3 can be computed in 𝑶(𝟐𝑵 _ 𝒑 + 𝒑𝟐).



An illustration of the algorithm
• In the lower intervals, the white squares denote the locations 𝑧% and 𝑦!, and in the upper intervals the white 

circles indicate the locations of the equispaced nodes �̃� and Y𝑦. The arrows illustrate how a point 𝑧%
communicates with a point 𝑦!.



Experimental results



The computation complexity is remarkably reduced



Identifying subpopulations in a large dataset by 
using marker genes



Summary

Identification of the most time-consuming part in the t-SNE algorithm

Recognition of the computation problem as

polynomial interpolation

Problem solved



Discussion

Find your question

Find your approach

Don’t settle

www.amazon.com




