# Fast interpolation-based *t*-SNE for data visualization

Min Dai

May 20<sup>th</sup>, 2021

daimin@zju.edu.cn

Institute of Genetics and Developmental Biology, Chinese Academy of Sciences

## nature methods

Explore content  $\checkmark$  Journal information  $\checkmark$  Publish with us  $\checkmark$ 

nature > nature methods > brief communications > article

Brief Communication | Published: 11 February 2019

## Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data

George C. Linderman, Manas Rachh, Jeremy G. Hoskins, Stefan Steinerberger & Yuval Kluger 🖂

Nature Methods 16, 243–245 (2019) Cite this article

12k Accesses | 87 Citations | 159 Altmetric | Metrics

## **Corresponding author**



#### Prof. Yuval Kluger, PhD

- Professor of Pathology
- Yale University

#### **Research interest:**

- bioinformatics
- machine learning
- applied mathematics
- dynamics of quantum fields





https://medicine.yale.edu/bbs/computational/profile/yuval\_kluger/

### **Scientific question**

#### How to reduce the complexity of the *t*-SNE algorithm?

## Outline

- Background
- Algorithm
- Summary
- Discussion

#### What is *t*-SNE?

(three slides from Aug 22 2019 talk)

Journal of Machine Learning Research 1 (2008) 1-48

Published: 2008

#### **Visualizing Data using t-SNE**

#### **Geoffrey E. Hinton**

#### Laurens van der Maaten

MICC-IKAT Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands

#### **Geoffrey Hinton**

Department of Computer Science University of Toronto 6 King's College Road, M5S 3G4 Toronto, ON, Canada L.VANDERMAATEN@MICC.UNIMAAS.NL

HINTON@CS.TORONTO.EDU

https://awards.acm.org/about/2018-turing

http://www.cs.toronto.edu/~hinton/absps/tsne.pdf

#### t-SNE has been widely used in biomedical research

• t-SNE analysis of 60,000 single cells sampled from the Mouse Cell Atlas



Han et al., Cell, 2018

#### t-SNE preserves the local structure of the high-dimensional data

• Measure pairwise similarities between high-dimensional and low-dimensional objects



What is interpolation?

#### Background

• How to provide a reasonable estimate of the population in 1975?



| Year                         | 1950    | 1960    | 1970    | 1980    | 1990    | 2000    |
|------------------------------|---------|---------|---------|---------|---------|---------|
| Population<br>(in thousands) | 151,326 | 179,323 | 203,302 | 226,542 | 249,633 | 281,422 |

#### Interpolation

- Interpolation is a type of estimation, a method of constructing new data points within the range of a discrete set of known data points.
- Given a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable.
  - It is often required to interpolate, i.e., estimate the value of that function for an intermediate value of the independent variable.



#### Interpolation

- So we have  $y_i = f(x_i)$  at n + 1 points  $x_o, x_1, \dots, x_i, \dots, x_n$  and  $x_j > x_{j-1}$ 
  - (often but not always evenly spaced)
- In general, we do not know the underlying function f(x)
- Conceptually, interpolation consists of two stages:
  - Develop a simple function P(x) that
    - Approximates f(x)
    - Passes through all the points  $x_i$
  - Evaluate  $f(x_t)$  where  $x_0 < x_t < x_n$



#### **Interpolation vs. Regression**

• Different approaches depending on the quality of the data



- Pretty confident: there is a polynomial relationship
- Little/no scatter
- Want to find an expression that passes exactly through all the points

- Unsure what the relationship is
- Clear scatter
- Want to find an expression that captures the trend: minimize some measure of the error of all the points...

### Why using polynomials in function approximation?

- Uniformly approximate continuous functions (Weierstrass approximation theorem)
- The derivative and indefinite integral of a polynomial are easy to determine and are also polynomials



#### **Definitions from calculus**

- The limit statement  $\lim_{x \to a} f(x) = L$  means that for any  $\varepsilon > 0$ , there is a  $\delta > 0$  such that  $|f(x) L| < \varepsilon$ whenever  $0 < |x - a| < \delta$ .
- A function f is **continuous** at x if  $\lim_{h \to 0} f(x+h) = f(x)$ .
- If  $\lim_{h \to 0} \frac{1}{h} [f(x+h) f(x)]$  exits, it is denoted by f'(x) or  $\frac{d}{dx} f(x)$  and is termed the **derivative** of f at x.

#### **Weierstrass approximation theorem**

• Suppose that *f* is defined and continuous on [*a*, *b*]. For each  $\epsilon > 0$ , there exists a polynomial *P*(*x*), with the property that

$$|f(x) - P(x)| < \epsilon$$
, for all  $x$  in  $[a, b]$ 

- Given any function, defined and continuous on a closed and bounded interval, there exists a polynomial that is as "close" to the given function as desired
- Polynomials:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where *n* is a nonnegative integer and  $a_0, ..., a_n$  are real constants.

#### **Polynomial interpolation**

• **Existence** – does there exist a polynomial that exactly passes through the n + 1 data points?

• Uniqueness – Is there more than one such polynomial?

#### **Existence of polynomial interpolation**

- Summation of terms, such that:
  - Equal to f(x) at a data point
  - Equal to zero at all other data points
  - Each term is a  $n^{\text{th}}$ -degree polynomial



$$L_i(x_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

#### Formally expressed as a theorem

• If  $x_0, x_1, ..., x_n$  are n + 1 distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial P(x) of degree at most n exists with

 $f(x_i) = P(x_i)$ , for each i = 0, 1, ..., n

• This polynomial is given by

$$P(x) = f(x_0)L_0(x) + \dots + f(x_n)L_n(x) = \sum_{i=0}^n L_i(x)f(x_i)$$

• where, for each i = 0, 1, ..., n,

$$L_{i}(x) = \frac{(x - x_{0})(x - x_{1})\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1})\dots(x_{i} - x_{i-1})(x_{i} - x_{i+1})\dots(x_{i} - x_{n})} = \prod_{k=0,k\neq i}^{n} \frac{(x - x_{k})}{(x_{i} - x_{k})}$$

Numerical Analysis

#### A sketch of the graph of a typical $L_i(x)$ (when *n* is even)

$$L_{i}(x) = \frac{(x - x_{0})(x - x_{1})\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1})\dots(x_{i} - x_{i-1})(x_{i} - x_{i+1})\dots(x_{i} - x_{n})} = \prod_{k=0, k \neq i}^{n} \frac{(x - x_{k})}{(x_{i} - x_{k})}$$



Numerical Analysis

#### **Linear interpolation**

• Summation of two lines:

$$P_{1}(x) = \sum_{i=0}^{1} L_{i}(x)f(x_{i})$$

$$= \frac{(x-x_{1})}{(x_{0}-x_{1})}f(x_{0}) + \frac{(x-x_{0})}{(x_{1}-x_{0})}f(x_{1})$$

Credit to Roger Crawfis

#### Lagrange polynomials

• 2<sup>nd</sup> order case => quadratic polynomials



#### Untangling the *t*-SNE algorithm

#### *t*-distributed stochastic neighbor embedding (*t*-SNE)

• Given a *d*-dimensional dataset  $X = \{x_1, x_2, ..., x_N\} \subset \mathbb{R}^d$ , *t*-SNE aims to compute the low-dimensional embedding

$$Y = \{y_1, y_2, \dots, y_N\} \subset \mathbb{R}^s$$

• where  $s \ll d$ , such that if two points  $x_i$  and  $x_j$  are close in the input space, then their corresponding points  $y_i$  and  $y_j$  are also close. Affinities between points and in the input space,  $p_{ij}$ , are defined as

$$p_{i|j} = \frac{\exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma_i^2}\right)}{\sum_{k \neq j} \exp\left(-\frac{\|x_i - x_k\|^2}{2\sigma_i^2}\right)} \quad \text{and} \quad p_{ij} = \frac{p_{i|j} + p_{j|i}}{2N}$$

• where  $\sigma_i$  is the bandwidth of the Gaussian distribution

#### t-distributed stochastic neighbor embedding

• Similarly, the affinity between points  $y_i$  and  $y_j$  in the embedding space is defined using the Cauchy kernel

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}}$$

• *t*-SNE finds the points  $\{y_1, y_2, ..., y_N\}$  that minimize the Kullback–Leibler (KL) divergence between the joint distribution of points in the input space *P* and the joint distribution of the points in the embedding space *Q*,

$$C(Y) = \mathrm{KL}(P \parallel Q) = \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

#### t-SNE preserves the local structure of the high-dimensional data

• Measure pairwise similarities between high-dimensional and low-dimensional objects



#### t-distributed stochastic neighbor embedding

• Starting with a random initialization, the cost function *C*(*Y*) is minimized by gradient descent, with the gradient

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) q_{ij} Z(y_i - y_j)$$

• where *Z* is a global normalization constant

$$Z = \sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}$$

• We split the gradient into two parts

$$\frac{1}{4} \frac{\partial C}{\partial y_i} = \sum_{j \neq i} p_{ij} q_{ij} Z(y_i - y_j) - \sum_{j \neq i} q_{ij}^2 Z(y_i - y_j)$$
attractive force between points
$$\int repulsive \text{ force between points}$$

$$\frac{1}{4} \frac{\partial C}{\partial y_i} = F_{attr,i} - F_{rep,i}$$

#### **Computation complexity of** *t***-SNE**

- The computation of the gradient at each step is an *N*-body simulation, where the position of each point is determined by the forces exerted on it by all other points.
- Exact computation of *N*-body simulations scales as  $O(N^2)$ , making exact *t*-SNE computationally prohibitive for datasets with tens of thousands of points.

$$\frac{1}{4}\frac{\partial C}{\partial y_i} = \sum_{j \neq i} p_{ij}q_{ij}Z(y_i - y_j) - \sum_{j \neq i} q_{ij}^2Z(y_i - y_j)$$

$$\frac{1}{4}\frac{\partial C}{\partial y_i} = F_{attr,i} - F_{rep,i}$$

#### **Computation complexity of** *t***-SNE**

- The attractive force between two points decays exponentially fast as a function of the distance between them, so that a point exerts a significant attractive force only on its nearest neighbors.
- Only nearest neighbors need to be considered when calculated  $F_{attr,i}$
- Computation of  $F_{rep,i}$  is the most time-consuming step in *t*-SNE

$$p_{i|j} = \frac{\exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma_i^2}\right)}{\sum_{k \neq j} \exp\left(-\frac{\|x_i - x_k\|^2}{2\sigma_i^2}\right)} \quad \text{and} \quad p_{ij} = \frac{p_{i|j} + p_{j|k}}{2N}$$
$$\frac{1}{4} \frac{\partial C}{\partial y_i} = \sum_{j \neq i} p_{ij} q_{ij} Z(y_i - y_j) - \sum_{j \neq i} q_{ij}^2 Z(y_i - y_j)$$
$$\frac{1}{4} \frac{\partial C}{\partial y_i} = F_{attr,i} - F_{rep,i}$$

#### **Accelerating computation of repulsive forces in FIt-SNE**

• Recall that  $\{y_1, y_2, ..., y_N\}$  is the *s*-dimensional embedding of a collection of *d*-dimensional vectors  $\{x_1, x_2, ..., x_N\}$ . At each step of gradient descent, the repulsive forces are given by

$$F_{\text{rep},i}(m) = \frac{\sum_{l=1,l\neq i}^{N} \frac{y_l(m) - y_i(m)}{(1 + \|y_l - y_i\|^2)^2}}{\sum_{j=1}^{N} \sum_{l=1,l\neq j}^{N} \frac{1}{(1 + \|y_l - y_j\|^2)}}$$

- where i = 1, 2, ..., N; m = 1, 2, ..., s; and  $y_i(j)$  denotes the *j*th component of  $y_i$ .
- Evidently, the repulsive force between the vectors  $\{y_1, y_2, ..., y_N\}$  consists of  $N^2$  pairwise interactions, and were it computed directly, it would require CPU time scaling as  $O(N^2)$ .

## The authors proposed an approach enabling the computation in O(N) time

#### **Accelerating computation of repulsive forces in FIt-SNE**

$$F_{\text{rep},i}(m) = \frac{\sum_{l=1,l\neq i}^{N} \frac{y_l(m) - y_i(m)}{(1 + \|y_l - y_i\|^2)^2}}{\sum_{j=1}^{N} \sum_{l=1,l\neq j}^{N} \frac{1}{\left(1 + \|y_l - y_j\|^2\right)}}$$

- By observation:
  - the repulsive forces  $F_{rep,i}$  defined in the above equation can be expressed as sums of the form

$$\phi(y_i) = \sum_{j=1}^N K(y_i, z_j) q_j$$

• where the kernel K(y, z) is either

$$K_1(y,z) = \frac{1}{(1+\|y-z\|^2)}$$
 or  $K_2(y,z) = \frac{1}{(1+\|y-z\|^2)^2}$ 

• for  $y, z \in \mathbb{R}^s$ . Note that both of the kernels  $K_1$  and  $K_2$  are smooth functions of y, z for all  $y, z \in \mathbb{R}^s$ .

#### Using polynomials to approximate kernels

- Let *p* be a positive integer. Suppose that  $\tilde{z}_1, ..., \tilde{z}_p$  are a collection of *p* points on the interval  $I_{z_0}$  and that  $\tilde{y}_1, ..., \tilde{y}_p$  are a collection of *p* points on the interval  $I_{y_0}$ .
- Let  $K_p(y, z)$  denote a bivariate polynomial interpolant of the kernel K(y, z) satisfying

$$K_p(\tilde{y}_j, \tilde{z}_l) = K(\tilde{y}_j, \tilde{z}_l), \qquad j, l = 1, 2, \dots, p$$

#### Using polynomials to approximate kernels

$$K_p(\tilde{y}_j, \tilde{z}_l) = K(\tilde{y}_j, \tilde{z}_l), \qquad j, l = 1, 2, \dots, p$$

• A simple calculation shows that  $K_p(y, z)$  is given by

$$K_p(y,z) = \sum_{l=1}^p \sum_{j=1}^p K(\tilde{y}_j, \tilde{z}_l) L_{j,\tilde{y}}(y) L_{l,\tilde{z}}(z)$$

• where  $L_{j,\tilde{y}}(y)$  and  $L_{l,\tilde{z}}(z)$  are the Lagrange polynomials

$$L_{j,\tilde{y}}(y) = \prod_{j=1, j \neq l}^{p} \frac{(y - \tilde{y}_j)}{(\tilde{y}_l - \tilde{y}_j)} \quad \text{and} \quad L_{l,\tilde{z}}(z) = \prod_{j=1, j \neq l}^{p} \frac{(z - \tilde{z}_j)}{(\tilde{z}_l - \tilde{z}_j)}$$

• where l = 1, 2, ..., p. In the following, we refer to the points  $\tilde{y}_1, ..., \tilde{y}_p$  and  $\tilde{z}_1, ..., \tilde{z}_p$  as interpolation points.

Previous slide

#### Formal expressed as a theorem

• If  $x_o, x_1, ..., x_n$  are n + 1 distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial P(x) of degree at most n exists with

 $f(x_i) = P(x_i)$ , for each i = 0, 1, ..., n

• This polynomial is given by

$$P(x) = f(x_0)L_0(x) + \dots + f(x_n)L_n(x) = \sum_{i=0}^n L_i(x)f(x_i)$$

• where, for each i = 0, 1, ..., n,

$$L_{i}(x) = \frac{(x - x_{0})(x - x_{1})\dots(x - x_{i-1})(x - x_{i+1})\dots(x - x_{n})}{(x_{i} - x_{0})(x_{i} - x_{1})\dots(x_{i} - x_{i-1})(x_{i} - x_{i+1})\dots(x_{i} - x_{n})} = \prod_{k=0,k\neq i}^{n} \frac{(x - x_{k})}{(x_{i} - x_{k})}$$

#### Using polynomials to approximate kernels

$$\phi(y_i) = \sum_{j=1}^N K(y_i, z_j) q_j \qquad K_1(y, z) = \frac{1}{(1+\|y-z\|^2)} \quad \text{or} \quad K_2(y, z) = \frac{1}{(1+\|y-z\|^2)^2}$$

• Let  $\tilde{\phi}(y_i)$  denote the approximation to  $\phi(y_i)$  obtained by replacing the kernel *K* in the above equation by its polynomial interpolant  $K_p$ , that is,

$$\tilde{\phi}(y_{i}) = \sum_{j=1}^{N} K_{p}(y_{i}, z_{j})q_{j}, \quad \text{for } i = 1, 2, ..., N$$

$$L_{j,\tilde{y}}(y) = \prod_{j=1, j \neq l}^{p} \frac{(y - \tilde{y}_{j})}{(\tilde{y}_{l} - \tilde{y}_{j})}$$

$$K_{p}(y, z) = \sum_{l=1}^{p} \sum_{j=1}^{p} K(\tilde{y}_{j}, \tilde{z}_{l}) L_{j,\tilde{y}}(y) L_{l,\tilde{z}}(z)$$

$$L_{l,\tilde{z}}(z) = \prod_{j=1, j \neq l}^{p} \frac{(z - \tilde{z}_{j})}{(\tilde{z}_{l} - \tilde{z}_{j})}$$

#### Analysis of the computation complexity

• The direct computation of  $\phi(y_1), ..., \phi(y_N)$  requires  $O(N^2)$  operations. In comparison, the values of  $\tilde{\phi}(y_1), ..., \tilde{\phi}(y_N)$  can be computed in  $O(2N \cdot p + p^2)$ .

$$\widetilde{\phi}(y_i) = \sum_{j=1}^{N} K_p(y_i, z_j) q_j$$
$$= \sum_{j=1}^{N} \sum_{l=1}^{p} \sum_{m=1}^{p} K(\widetilde{y}_l, \widetilde{z}_m) L_{l, \widetilde{y}}(y_i) L_{m, \widetilde{z}}(z_j) q_j$$

#### An illustration of the algorithm

• In the lower intervals, the white squares denote the locations  $z_j$  and  $y_i$ , and in the upper intervals the white circles indicate the locations of the equispaced nodes  $\tilde{z}$  and  $\tilde{y}$ . The arrows illustrate how a point  $z_j$  communicates with a point  $y_i$ .



#### **Experimental results**

The computation complexity is remarkably reduced

**Table 1** | Time taken for 1,000 iterations of the gradient descent phase of 2D t-SNE using BH t-SNE compared to our implementation (FIt-SNE), as compared on a 2017 Macbook Pro for a given number of points *N* 

| Ν                       | BH t-SNE  | FIt-SNE |
|-------------------------|-----------|---------|
| 10,000                  | 1min      | <1min   |
| 100,000                 | 11 min    | <1min   |
| 500,000                 | 1h 10 min | 3 min   |
| 1,000,000               | 3h9min    | 15 min  |
| See the Methods for mor |           |         |

## Identifying subpopulations in a large dataset by using marker genes



Cell type GABAergic subtype (*Sncg, Slc17a8*) • VLMC subtype (*Spp1, Col15a1*)

#### **Summary**

Identification of the most time-consuming part in the *t*-SNE algorithm  $\bigcirc$ Recognition of the computation problem as polynomial interpolation  $\bigcirc$ 

Problem solved

#### Discussion



# Thank you!

