Fast interpolation-based \boldsymbol{t}-SNE for data visualization

Min Dai
May 20 ${ }^{\text {th }}, 2021$
daimin@zju.edu.cn

nature methods

Explore content \vee Journal information \vee Publish with us \checkmark

nature > nature methods > brief communications > article

Brief Communication | Published: 11 February 2019

Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data

George C. Linderman, Manas Rachh, Jeremy G. Hoskins, Stefan Steinerberger \& Yuval Kluger \boxtimes
Nature Methods 16, 243-245 (2019) | Cite this article
12k Accesses $\mid \mathbf{8 7}$ Citations $\mid \mathbf{1 5 9}$ Altmetric \| Metrics

Corresponding author

Prof. Yuval Kluger, PhD

- Professor of Pathology
- Yale University

Research interest:

- bioinformatics
- machine learning
- applied mathematics
- dynamics of quantum fields

Scientific question

How to reduce the complexity of the t-SNE algorithm?

Outline

- Background
- Algorithm
- Summary
- Discussion

What is $t-\mathrm{SNE}$?

(three slides from Aug 222019 talk)

Published: 2008

Visualizing Data using t-SNE

Geoffrey E. Hinton

MICC-IKAT
Maastricht University
P.O. Box 616, 6200 MD Maastricht, The Netherlands

Geoffrey Hinton

Department of Computer Science
University of Toronto
6 King's College Road, M5S 3 G4 Toronto, ON, Canada

HINTON@CS.TORONTO.EDU
https://awards.acm.org/about/2018-turing

t-SNE has been widely used in biomedical research

- t-SNE analysis of 60,000 single cells sampled from the Mouse Cell Atlas

t-SNE preserves the local structure of the high-dimensional data

- Measure pairwise similarities between high-dimensional and low-dimensional objects

High Dim

Low Dim

What is interpolation?

Background

- How to provide a reasonable estimate of the population in 1975 ?

Interpolation

- Interpolation is a type of estimation, a method of constructing new data points within the range of a discrete set of known data points.
- Given a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable.
- It is often required to interpolate, i.e., estimate the value of that function for an intermediate value of the independent variable.

Interpolation

- So we have $y_{i}=f\left(x_{i}\right)$ at $n+1$ points $x_{o}, x_{1}, \ldots, x_{i}, \ldots, x_{n}$ and $x_{j}>x_{j-1}$
- (often but not always evenly spaced)
- In general, we do not know the underlying function $f(x)$
- Conceptually, interpolation consists of two stages:
- Develop a simple function $P(x)$ that
- Approximates $f(x)$
- Passes through all the points x_{i}
- Evaluate $f\left(x_{t}\right)$ where $x_{0}<x_{t}<x_{n}$

Interpolation vs. Regression

- Different approaches depending on the quality of the data

- Pretty confident: there is a polynomial relationship
- Little/no scatter
- Want to find an expression that passes exactly through all the points

- Unsure what the relationship is
- Clear scatter
- Want to find an expression that captures the trend: minimize some measure of the error of all the points...

Why using polynomials in function approximation?

- Uniformly approximate continuous functions (Weierstrass approximation theorem)
- The derivative and indefinite integral of a polynomial are easy to determine and are also polynomials

Definitions from calculus

- The limit statement $\lim _{x \rightarrow a} f(x)=L$ means that for any $\varepsilon>0$, there is a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $0<|x-a|<\delta$.
- A function f is continuous at x if $\lim _{h \rightarrow 0} f(x+h)=f(x)$.
- If $\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h)-f(x)]$ exits, it is denoted by $f^{\prime}(x)$ or $\frac{d}{d x} f(x)$ and is termed the derivative of f at x.

Weierstrass approximation theorem

- Suppose that f is defined and continuous on $[a, b]$. For each $\epsilon>0$, there exists a polynomial $P(x)$, with the property that

$$
|f(x)-P(x)|<\epsilon, \quad \text { for all } x \text { in }[a, b]
$$

- Given any function, defined and continuous on a closed and bounded interval, there exists a polynomial that is as "close" to the given function as desired
- Polynomials:

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where n is a nonnegative integer and a_{0}, \ldots, a_{n} are real constants.

Polynomial interpolation

- Existence - does there exist a polynomial that exactly passes through the $n+1$ data points?
- Uniqueness - Is there more than one such polynomial?

Existence of polynomial interpolation

- Summation of terms, such that:
- Equal to $f(x)$ at a data point
- Equal to zero at all other data points
- Each term is a $n^{\text {th }}$-degree polynomial

$$
P_{n}(x)=\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)
$$

$$
L_{i}(x)=\prod_{k=0, k \neq i}^{n} \frac{\left(x-x_{k}\right)}{\left(x_{i}-x_{k}\right)}
$$

$$
L_{i}\left(x_{j}\right)=\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Formally expressed as a theorem

- If $x_{0}, x_{1}, \ldots, x_{n}$ are $n+1$ distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial $P(x)$ of degree at most n exists with

$$
f\left(x_{i}\right)=P\left(x_{i}\right), \quad \text { for each } i=0,1, \ldots, n
$$

- This polynomial is given by

$$
P(x)=f\left(x_{0}\right) L_{0}(x)+\cdots+f\left(x_{n}\right) L_{n}(x)=\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)
$$

- where, for each $i=0,1, \ldots, n$,

$$
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)}=\prod_{k=0, k \neq i}^{n} \frac{\left(x-x_{k}\right)}{\left(x_{i}-x_{k}\right)}
$$

A sketch of the graph of a typical $L_{i}(x)$ (when n is even)

$$
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)}=\prod_{k=0, k \neq i}^{n} \frac{\left(x-x_{k}\right)}{\left(x_{i}-x_{k}\right)}
$$

Linear interpolation

- Summation of two lines:

$$
\begin{aligned}
P_{1}(x) & =\sum_{i=0}^{1} L_{i}(x) f\left(x_{i}\right) \\
& =\frac{\left(x-x_{1}\right)}{\left(x_{0}-x_{1}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{0}\right)} f\left(x_{1}\right)
\end{aligned}
$$

Lagrange polynomials

- $2^{\text {nd }}$ order case $=>$ quadratic polynomials

Untangling the \boldsymbol{t}-SNE algorithm

t-distributed stochastic neighbor embedding (t-SNE)

- Given a d-dimensional dataset $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset \mathbb{R}^{d}, t$-SNE aims to compute the low-dimensional embedding

$$
Y=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\} \subset \mathbb{R}^{s}
$$

- where $s \ll d$, such that if two points x_{i} and x_{j} are close in the input space, then their corresponding points y_{i} and y_{j} are also close. Affinities between points and in the input space, $p_{i j}$, are defined as

$$
p_{i \mid j}=\frac{\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma_{i}^{2}}\right)}{\sum_{k \neq j} \exp \left(-\frac{\left\|x_{i}-x_{k}\right\|^{2}}{2 \sigma_{i}^{2}}\right)} \text { and } p_{i j}=\frac{p_{i \mid j}+p_{j \mid i}}{2 N}
$$

- where σ_{i} is the bandwidth of the Gaussian distribution

t-distributed stochastic neighbor embedding

- Similarly, the affinity between points y_{i} and y_{j} in the embedding space is defined using the Cauchy kernel

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}
$$

- t-SNE finds the points $\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ that minimize the Kullback-Leibler (KL) divergence between the joint distribution of points in the input space P and the joint distribution of the points in the embedding space Q,

$$
C(Y)=\operatorname{KL}(P \| Q)=\sum_{i \neq j} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

t-SNE preserves the local structure of the high-dimensional data

- Measure pairwise similarities between high-dimensional and low-dimensional objects

High Dim

Low Dim

t-distributed stochastic neighbor embedding

- Starting with a random initialization, the cost function $C(Y)$ is minimized by gradient descent, with the gradient

$$
\frac{\partial C}{\partial y_{i}}=4 \sum_{j \neq i}\left(p_{i j}-q_{i j}\right) q_{i j} Z\left(y_{i}-y_{j}\right)
$$

- where Z is a global normalization constant

$$
Z=\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}
$$

- We split the gradient into two parts

Computation complexity of t-SNE

- The computation of the gradient at each step is an N-body simulation, where the position of each point is determined by the forces exerted on it by all other points.
- Exact computation of N-body simulations scales as $O\left(N^{2}\right)$, making exact t-SNE computationally prohibitive for datasets with tens of thousands of points.

$$
\begin{aligned}
& \frac{1}{4} \frac{\partial C}{\partial y_{i}}=\sum_{j \neq i} p_{i j} q_{i j} Z\left(y_{i}-y_{j}\right)-\sum_{j \neq i} q_{i j}^{2} Z\left(y_{i}-y_{j}\right) \\
& \frac{1}{4} \frac{\partial C}{\partial y_{i}}=F_{a t t r, i}-F_{r e p, i}
\end{aligned}
$$

Computation complexity of t-SNE

- The attractive force between two points decays exponentially fast as a function of the distance between them, so that a point exerts a significant attractive force only on its nearest neighbors.
- Only nearest neighbors need to be considered when calculated $F_{a t t r, i}$
- Computation of $F_{r e p, i}$ is the most time-consuming step in t-SNE

$$
\begin{aligned}
& p_{i \mid j}=\frac{\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma_{i}^{2}}\right)}{\sum_{k \neq j} \exp \left(-\frac{\left\|x_{i}-x_{k}\right\|^{2}}{2 \sigma_{i}^{2}}\right)} \text { and } p_{i j}=\frac{p_{i \mid j}+p_{j \mid i}}{2 N} \\
& \frac{1}{4} \frac{\partial C}{\partial y_{i}}=\sum_{j \neq i} p_{i j} q_{i j} Z\left(y_{i}-y_{j}\right)-\sum_{j \neq i} q_{i j}^{2} Z\left(y_{i}-y_{j}\right) \\
& \frac{1}{4} \frac{\partial C}{\partial y_{i}}=F_{a t t r, i}-F_{r e p, i}
\end{aligned}
$$

Accelerating computation of repulsive forces in FIt-SNE

- Recall that $\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ is the s-dimensional embedding of a collection of d-dimensional vectors $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$. At each step of gradient descent, the repulsive forces are given by

$$
F_{\mathrm{rep}, i}(m)=\frac{\sum_{l=1, l \neq i}^{N} \frac{y_{l}(m)-y_{i}(m)}{\left(1+\left\|y_{l}-y_{i}\right\|^{2}\right)^{2}}}{\sum_{j=1}^{N} \sum_{l=1, l \neq j}^{N} \frac{1}{\left(1+\left\|y_{l}-y_{j}\right\|^{2}\right)}}
$$

- where $i=1,2, \ldots, N ; m=1,2, \ldots, s ;$ and $y_{i}(j)$ denotes the j th component of y_{i}.
- Evidently, the repulsive force between the vectors $\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ consists of N^{2} pairwise interactions, and were it computed directly, it would require CPU time scaling as $O\left(N^{2}\right)$.

The authors proposed an approach enabling the computation in $O(N)$ time

Accelerating computation of repulsive forces in FIt-SNE

$$
F_{\mathrm{rep}, i}(m)=\frac{\sum_{l=1, l \neq i}^{N} \frac{y_{l}(m)-y_{i}(m)}{\left(1+\left\|y_{l}-y_{i}\right\|^{2}\right)^{2}}}{\sum_{j=1}^{N} \sum_{l=1, l \neq j}^{N} \frac{1}{\left(1+\left\|y_{l}-y_{j}\right\|^{2}\right)}}
$$

- By observation:
- the repulsive forces $F_{\text {rep, } i}$ defined in the above equation can be expressed as sums of the form

$$
\phi\left(y_{i}\right)=\sum_{j=1}^{N} K\left(y_{i}, z_{j}\right) q_{j}
$$

- where the kernel $K(y, z)$ is either

$$
K_{1}(y, z)=\frac{1}{\left(1+\|y-z\|^{2}\right)} \quad \text { or } \quad K_{2}(y, z)=\frac{1}{\left(1+\|y-z\|^{2}\right)^{2}}
$$

- for $y, z \in \mathbb{R}^{s}$. Note that both of the kernels K_{1} and K_{2} are smooth functions of y, z for all $y, z \in \mathbb{R}^{s}$.

Using polynomials to approximate kernels

- Let p be a positive integer. Suppose that $\tilde{z}_{1}, \ldots, \tilde{z}_{p}$ are a collection of p points on the interval $I_{z_{0}}$ and that $\tilde{y}_{1}, \ldots, \tilde{y}_{p}$ are a collection of p points on the interval $I_{y_{0}}$.
- Let $K_{p}(y, z)$ denote a bivariate polynomial interpolant of the kernel $K(y, z)$ satisfying

$$
K_{p}\left(\tilde{y}_{j}, \tilde{z}_{l}\right)=K\left(\tilde{y}_{j}, \tilde{z}_{l}\right), \quad j, l=1,2,, \ldots, p
$$

Using polynomials to approximate kernels

$$
K_{p}\left(\tilde{y}_{j}, \tilde{z}_{l}\right)=K\left(\tilde{y}_{j}, \tilde{z}_{l}\right), \quad j, l=1,2,, \ldots, p
$$

- A simple calculation shows that $K_{p}(y, z)$ is given by

$$
K_{p}(y, z)=\sum_{l=1}^{p} \sum_{j=1}^{p} K\left(\tilde{y}_{j}, \tilde{z}_{l}\right) L_{j, \tilde{y}}(y) L_{l, \tilde{z}}(z)
$$

- where $L_{j, \tilde{y}}(y)$ and $L_{l, \tilde{z}}(z)$ are the Lagrange polynomials

$$
L_{j, \tilde{y}}(y)=\prod_{j=1, j \neq l}^{p} \frac{\left(y-\tilde{y}_{j}\right)}{\left(\tilde{y}_{l}-\tilde{y}_{j}\right)} \quad \text { and } \quad L_{l, \tilde{z}}(z)=\prod_{j=1, j \neq l}^{p} \frac{\left(z-\tilde{z}_{j}\right)}{\left(\tilde{z}_{l}-\tilde{z}_{j}\right)}
$$

- where $l=1,2, \ldots, p$. In the following, we refer to the points $\tilde{y}_{1}, \ldots, \tilde{y}_{p}$ and $\tilde{z}_{1}, \ldots, \tilde{z}_{p}$ as interpolation points.
- If $x_{o}, x_{1}, \ldots, x_{n}$ are $n+1$ distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial $P(x)$ of degree at most n exists with

$$
f\left(x_{i}\right)=P\left(x_{i}\right), \quad \text { for each } i=0,1, \ldots, n
$$

- This polynomial is given by

$$
P(x)=f\left(x_{0}\right) L_{0}(x)+\cdots+f\left(x_{n}\right) L_{n}(x)=\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)
$$

- where, for each $i=0,1, \ldots, n$,

$$
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)}=\prod_{k=0, k \neq i}^{n} \frac{\left(x-x_{k}\right)}{\left(x_{i}-x_{k}\right)}
$$

Using polynomials to approximate kernels

$$
\phi\left(y_{i}\right)=\sum_{j=1}^{N} K\left(y_{i}, z_{j}\right) q_{j} \quad K_{1}(y, z)=\frac{1}{\left(1+\|y-z\|^{2}\right)} \quad \text { or } \quad K_{2}(y, z)=\frac{1}{\left(1+\|y-z\|^{2}\right)^{2}}
$$

- Let $\tilde{\phi}\left(y_{i}\right)$ denote the approximation to $\phi\left(y_{i}\right)$ obtained by replacing the kernel K in the above equation by its polynomial interpolant K_{p}, that is,

$$
\begin{gathered}
\tilde{\phi}\left(y_{i}\right)=\sum_{j=1}^{N} K_{p}\left(y_{i}, z_{j}\right) q_{j}, \quad \text { for } i=1,2, \ldots, N \\
K_{p}(y, z)=\sum_{l=1}^{p} \sum_{j=1}^{p} K\left(\tilde{y}_{j}, \tilde{z}_{l}\right) L_{j, \tilde{y}}(y) L_{l, \tilde{z}}(z) \\
L_{j, \tilde{y}}(y)=\prod_{j=1, j \neq l}^{p} \frac{\left(y-\tilde{y}_{j}\right)}{\left(\tilde{y}_{l}-\tilde{y}_{j}\right)} \\
L_{l, \tilde{z}}(z)=\prod_{j=1, j \neq l}^{p} \frac{\left(z-\tilde{z}_{j}\right)}{\left(\tilde{z}_{l}-\tilde{z}_{j}\right)}
\end{gathered}
$$

Analysis of the computation complexity

- The direct computation of $\phi\left(y_{1}\right), \ldots, \phi\left(y_{N}\right)$ requires $\boldsymbol{O}\left(\boldsymbol{N}^{2}\right)$ operations. In comparison, the values of $\tilde{\phi}\left(y_{1}\right), \ldots, \tilde{\phi}\left(y_{N}\right)$ can be computed in $\boldsymbol{O}\left(2 \boldsymbol{N} \cdot \boldsymbol{p}+\boldsymbol{p}^{2}\right)$.

$$
\begin{aligned}
& \tilde{\phi}\left(y_{i}\right)= \sum_{j=1}^{N} K_{p}\left(y_{i}, z_{j}\right) q_{j} \\
&= \sum_{j=1}^{N} \sum_{l=1}^{p} \sum_{m=1}^{p} K\left(\tilde{y}_{l}, \tilde{z}_{m}\right) L_{l, \tilde{y}}\left(y_{i}\right) L_{m, \tilde{z}}\left(z_{j}\right) q_{j} \\
&= \sum_{l=1}^{p} L_{l, \tilde{y}}\left(y_{i}\right)\left(\sum_{m=1}^{p} K\left(\tilde{y}_{l}, \tilde{z}_{m}\right)\left(\sum_{j=1}^{N} L_{m, \tilde{z}}\left(z_{j}\right) q_{j}\right)\right) \text { for } i=1,2, \ldots, N \\
& \quad \downarrow_{\boldsymbol{O}(N \cdot \boldsymbol{p})}^{\boldsymbol{O}\left(\boldsymbol{p}^{2}\right)} \quad \boldsymbol{O}(\boldsymbol{N} \cdot \boldsymbol{p})
\end{aligned}
$$

An illustration of the algorithm

- In the lower intervals, the white squares denote the locations z_{j} and y_{i}, and in the upper intervals the white circles indicate the locations of the equispaced nodes \tilde{z} and \tilde{y}. The arrows illustrate how a point z_{j} communicates with a point y_{i}.

Experimental results

The computation complexity is remarkably reduced

Table 1 | Time taken for 1,000 iterations of the gradient descent phase of 2D t-SNE using BH t-SNE compared to our implementation (FIt-SNE), as compared on a 2017 Macbook Pro for a given number of points N

\boldsymbol{N}	BH t-SNE	FIt-SNE
10,000	1 min	$<1 \mathrm{~min}$
100,000	11 min	$<1 \mathrm{~min}$
500,000	1 h 10 min	3 min
$1,000,000$	3 h 9 min	15 min
See the Methods for more details.		

Identifying subpopulations in a large dataset by using marker genes

Summary

Identification of the most time-consuming part in the t-SNE algorithm

Recognition of the computation problem as polynomial interpolation

Problem solved

Discussion

Thank you!

