Fast interpolation-based t-SNE for data visualization

Min Dai
May 20th, 2021
daimin@zju.edu.cn

Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
Brief Communication | Published: 11 February 2019

Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data

George C. Linderman, Manas Rachh, Jeremy G. Hoskins, Stefan Steinerberger & Yuval Kluger

Nature Methods 16, 243–245 (2019) | Cite this article

12k Accesses | 87 Citations | 159 Altmetric | Metrics
Corresponding author

Prof. Yuval Kluger, PhD
• Professor of Pathology
• Yale University

Research interest:
• bioinformatics
• machine learning
• applied mathematics
• dynamics of quantum fields

https://medicine.yale.edu/bbs/computational/profile/yuval_kluger/
How to reduce the complexity of the t-SNE algorithm?
Outline

• Background
• Algorithm
• Summary
• Discussion
What is t-SNE?

(three slides from Aug 22 2019 talk)
Visualizing Data using t-SNE

Laurens van der Maaten
MICC-IKAT
Maastricht University
P.O. Box 616, 6200 MD Maastricht, The Netherlands

Geoffrey Hinton
Department of Computer Science
University of Toronto
6 King’s College Road, M5S 3G4 Toronto, ON, Canada

Published: 2008
t-SNE has been widely used in biomedical research

- t-SNE analysis of 60,000 single cells sampled from the Mouse Cell Atlas
t-SNE preserves the local structure of the high-dimensional data

- Measure pairwise similarities between high-dimensional and low-dimensional objects
What is interpolation?
Background

• How to provide a reasonable estimate of the population in 1975?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (in thousands)</td>
<td>151,326</td>
<td>179,323</td>
<td>203,302</td>
<td>226,542</td>
<td>249,633</td>
<td>281,422</td>
</tr>
</tbody>
</table>
Interpolation

- Interpolation is a type of estimation, a method of constructing new data points within the range of a discrete set of known data points.
- Given a number of data points, obtained by sampling or experimentation, which represent the values of a function for a limited number of values of the independent variable.
 - It is often required to interpolate, i.e., estimate the value of that function for an intermediate value of the independent variable.
Interpolation

- So we have $y_i = f(x_i)$ at $n + 1$ points $x_0, x_1, ..., x_i, ..., x_n$ and $x_j > x_{j-1}$
 - (often but not always evenly spaced)
- In general, we do not know the underlying function $f(x)$
- Conceptually, interpolation consists of two stages:
 - Develop a simple function $P(x)$ that
 - Approximates $f(x)$
 - Passes through all the points x_i
 - Evaluate $f(x_t)$ where $x_0 < x_t < x_n$
Interpolation vs. Regression

- Different approaches depending on the quality of the data

- Pretty confident: there is a polynomial relationship
- Little/no scatter
- Want to find an expression that passes exactly through all the points

- Unsure what the relationship is
- Clear scatter
- Want to find an expression that captures the trend: minimize some measure of the error of all the points...

Credit to Roger Crawfis
Why using polynomials in function approximation?

• Uniformly approximate continuous functions (Weierstrass approximation theorem)
• The derivative and indefinite integral of a polynomial are easy to determine and are also polynomials
Definitions from calculus

- The **limit** statement \(\lim_{x \to a} f(x) = L \) means that for any \(\varepsilon > 0 \), there is a \(\delta > 0 \) such that \(|f(x) - L| < \varepsilon \) whenever \(0 < |x - a| < \delta \).

- A function \(f \) is **continuous** at \(x \) if \(\lim_{h \to 0} f(x + h) = f(x) \).

- If \(\lim_{h \to 0} \frac{1}{h} [f(x + h) - f(x)] \) exits, it is denoted by \(f'(x) \) or \(\frac{d}{dx} f(x) \) and is termed the **derivative** of \(f \) at \(x \).
Weierstrass approximation theorem

• Suppose that f is defined and continuous on $[a, b]$. For each $\epsilon > 0$, there exists a polynomial $P(x)$, with the property that

$$|f(x) - P(x)| < \epsilon, \quad \text{for all } x \text{ in } [a, b]$$

• Given any function, defined and continuous on a closed and bounded interval, there exists a polynomial that is as “close” to the given function as desired

• Polynomials:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

where n is a nonnegative integer and $a_0, ..., a_n$ are real constants.
Polynomial interpolation

- **Existence** – does there exist a polynomial that exactly passes through the \(n + 1 \) data points?

- **Uniqueness** – Is there more than one such polynomial?
Existence of polynomial interpolation

• Summation of terms, such that:
 • Equal to \(f(x) \) at a data point
 • Equal to zero at all other data points
 • Each term is a \(n \)-degree polynomial

\[
P_n(x) = \sum_{i=0}^{n} L_i(x)f(x_i)
\]

\[
L_i(x) = \prod_{k=0, k \neq i}^{n} \frac{(x - x_k)}{(x_i - x_k)}
\]

\[
L_i(x_j) = \delta_{ij} = \begin{cases}
1 & i = j \\
0 & i \neq j
\end{cases}
\]

Credit to Roger Crawfis
Formally expressed as a theorem

If \(x_0, x_1, \ldots, x_n \) are \(n + 1 \) distinct numbers and \(f \) is a function whose values are given at these numbers, then a unique polynomial \(P(x) \) of degree at most \(n \) exists with

\[
f(x_i) = P(x_i), \quad \text{for each } i = 0, 1, \ldots, n
\]

This polynomial is given by

\[
P(x) = f(x_0)L_0(x) + \cdots + f(x_n)L_n(x) = \sum_{i=0}^{n} L_i(x)f(x_i)
\]

where, for each \(i = 0, 1, \ldots, n \),

\[
L_i(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)} = \prod_{k=0, k \neq i}^{n} \frac{(x - x_k)}{(x_i - x_k)}
\]

Numerical Analysis
A sketch of the graph of a typical $L_i(x)$ (when n is even)

\[
L_i(x) = \frac{(x - x_0)(x - x_1) \ldots (x - x_{i-1})(x - x_i+1) \ldots (x - x_n)}{(x_i - x_0)(x_i - x_1) \ldots (x_i - x_{i-1})(x_i - x_{i+1}) \ldots (x_i - x_n)} = \prod_{k=0, k \neq i}^{n} \frac{(x - x_k)}{(x_i - x_k)}
\]
Linear interpolation

• Summation of two lines:

\[P_1(x) = \sum_{i=0}^{1} L_i(x) f(x_i) \]

\[= \frac{(x-x_1)}{(x_0-x_1)} f(x_0) + \frac{(x-x_0)}{(x_1-x_0)} f(x_1) \]
• 2nd order case => quadratic polynomials
Untangling the t-SNE algorithm
t-distributed stochastic neighbor embedding (t-SNE)

- Given a d-dimensional dataset $X = \{x_1, x_2, ..., x_N\} \subset \mathbb{R}^d$, t-SNE aims to compute the low-dimensional embedding
 $$Y = \{y_1, y_2, ..., y_N\} \subset \mathbb{R}^s$$

- where $s \ll d$, such that if two points x_i and x_j are close in the input space, then their corresponding points y_i and y_j are also close. Affinities between points and in the input space, p_{ij}, are defined as
 $$p_{ij} = \frac{\exp \left(- \frac{||x_i - x_j||^2}{2\sigma_i^2} \right)}{\sum_{k \neq j} \exp \left(- \frac{||x_i - x_k||^2}{2\sigma_i^2} \right)}$$
 and
 $$p_{ij} = \frac{p_{i|j} + p_{j|i}}{2N}$$

- where σ_i is the bandwidth of the Gaussian distribution
t-distributed stochastic neighbor embedding

- Similarly, the affinity between points y_i and y_j in the embedding space is defined using the Cauchy kernel

 $$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}}$$

- t-SNE finds the points $\{y_1, y_2, ..., y_N\}$ that minimize the Kullback–Leibler (KL) divergence between the joint distribution of points in the input space P and the joint distribution of the points in the embedding space Q,

 $$C(Y) = KL(P \parallel Q) = \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$
t-SNE preserves the local structure of the high-dimensional data

- Measure pairwise similarities between high-dimensional and low-dimensional objects
t-distributed stochastic neighbor embedding

- Starting with a random initialization, the cost function $C(Y)$ is minimized by gradient descent, with the gradient

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij})q_{ij}Z(y_i - y_j)$$

- where Z is a global normalization constant

$$Z = \sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}$$

- We split the gradient into two parts

$$\frac{1}{4} \frac{\partial C}{\partial y_i} = \sum_{j \neq i} p_{ij}q_{ij}Z(y_i - y_j) - \sum_{j \neq i} q_{ij}^2Z(y_i - y_j)$$

- attractive force between points
- repulsive force between points

$$\frac{1}{4} \frac{\partial C}{\partial y_i} = F_{\text{attr},i} - F_{\text{rep},i}$$
Computation complexity of t-SNE

- The computation of the gradient at each step is an N-body simulation, where the position of each point is determined by the forces exerted on it by all other points.
- Exact computation of N-body simulations scales as $O(N^2)$, making exact t-SNE computationally prohibitive for datasets with tens of thousands of points.

\[
\frac{1}{4} \frac{\partial C}{\partial y_i} = \sum_{j \neq i} p_{ij} q_{ij} Z(y_i - y_j) - \sum_{j \neq i} q_{ij}^2 Z(y_i - y_j)
\]

\[
\frac{1}{4} \frac{\partial C}{\partial y_i} = F_{\text{attr},i} - F_{\text{rep},i}
\]
Computation complexity of t-SNE

• The attractive force between two points decays exponentially fast as a function of the distance between them, so that a point exerts a significant attractive force only on its nearest neighbors.

• Only nearest neighbors need to be considered when calculated $F_{\text{attr},i}$

• Computation of $F_{\text{rep},i}$ is the most time-consuming step in t-SNE

$$p_{i|j} = \exp \left(-\frac{\|x_i - x_j\|^2}{2\sigma_i^2} \right) \sum_{k \neq j} \exp \left(-\frac{\|x_i - x_k\|^2}{2\sigma_i^2} \right) \quad \text{and} \quad p_{ij} = \frac{p_{i|j} + p_{j|i}}{2N}$$

$$\frac{1}{4} \frac{\partial C}{\partial y_i} = \sum_{j \neq i} p_{ij} q_{ij} Z(y_i - y_j) - \sum_{j \neq i} q_{ij} Z(y_i - y_j)$$

$$\frac{1}{4} \frac{\partial C}{\partial y_i} = F_{\text{attr},i} - F_{\text{rep},i}$$
Accelerating computation of repulsive forces in FLt-SNE

- Recall that \(\{y_1, y_2, \ldots, y_N\}\) is the \(s\)-dimensional embedding of a collection of \(d\)-dimensional vectors \(\{x_1, x_2, \ldots, x_N\}\). At each step of gradient descent, the repulsive forces are given by

\[
F_{\text{rep}, i}(m) = \frac{\sum_{l=1, l \neq i}^{N} \frac{y_i(m) - y_i(m)}{(1 + \|y_l - y_i\|^2)^2}}{\sum_{j=1}^{N} \sum_{l=1, l \neq j}^{N} \frac{1}{(1 + \|y_l - y_j\|^2)}}
\]

- where \(i = 1, 2, \ldots, N; m = 1, 2, \ldots, s\); and \(y_i(j)\) denotes the \(j\)th component of \(y_i\).

- Evidently, the repulsive force between the vectors \(\{y_1, y_2, \ldots, y_N\}\) consists of \(N^2\) pairwise interactions, and were it computed directly, it would require CPU time scaling as \(O(N^2)\).
The authors proposed an approach enabling the computation in $O(N)$ time
Accelerating computation of repulsive forces in Flt-SNE

\[F_{\text{rep},i}(m) = \sum_{l=1, l \neq i}^{N} \frac{y_l(m) - y_i(m)}{(1 + \|y_l - y_i\|^2)^2} \]

\[\sum_{j=1}^{N} \sum_{l=1, l \neq j}^{N} \frac{1}{(1 + \|y_l - y_j\|^2)^2} \]

- By observation:
 - the repulsive forces \(F_{\text{rep},i} \) defined in the above equation can be expressed as sums of the form
 \[\phi(y_i) = \sum_{j=1}^{N} K(y_i, z_j) q_j \]
 - where the kernel \(K(y, z) \) is either
 \[K_1(y, z) = \frac{1}{(1 + \|y - z\|^2)} \quad \text{or} \quad K_2(y, z) = \frac{1}{(1 + \|y - z\|^2)^2} \]
 - for \(y, z \in \mathbb{R}^s \). Note that both of the kernels \(K_1 \) and \(K_2 \) are smooth functions of \(y, z \) for all \(y, z \in \mathbb{R}^s \).
Using polynomials to approximate kernels

Let p be a positive integer. Suppose that $\tilde{z}_1, ..., \tilde{z}_p$ are a collection of p points on the interval I_{z_0} and that $\tilde{y}_1, ..., \tilde{y}_p$ are a collection of p points on the interval I_{y_0}.

Let $K_p(y, z)$ denote a bivariate polynomial interpolant of the kernel $K(y, z)$ satisfying

$$K_p(\tilde{y}_j, \tilde{z}_l) = K(\tilde{y}_j, \tilde{z}_l), \quad j, l = 1, 2, ..., p$$
Using polynomials to approximate kernels

\[K_p(\tilde{y}_j, \tilde{z}_l) = K(\tilde{y}_j, \tilde{z}_l), \quad j, l = 1, 2, \ldots, p \]

- A simple calculation shows that \(K_p(y, z) \) is given by

\[
K_p(y, z) = \sum_{l=1}^{p} \sum_{j=1}^{p} K(\tilde{y}_j, \tilde{z}_l) L_{j, \tilde{y}}(y) L_{l, \tilde{z}}(z)
\]

- where \(L_{j, \tilde{y}}(y) \) and \(L_{l, \tilde{z}}(z) \) are the Lagrange polynomials

\[
L_{j, \tilde{y}}(y) = \prod_{j=1, j \neq l}^{p} \frac{(y - \tilde{y}_j)}{(`\tilde{y}_l - \tilde{y}_j)} \quad \text{and} \quad L_{l, \tilde{z}}(z) = \prod_{j=1, j \neq l}^{p} \frac{(z - \tilde{z}_j)}{(`\tilde{z}_l - \tilde{z}_j)}
\]

- where \(l = 1, 2, \ldots, p \). In the following, we refer to the points \(\tilde{y}_1, \ldots, \tilde{y}_p \) and \(\tilde{z}_1, \ldots, \tilde{z}_p \) as interpolation points.
Formal expressed as a theorem

- If \(x_0, x_1, \ldots, x_n \) are \(n + 1 \) distinct numbers and \(f \) is a function whose values are given at these numbers, then a unique polynomial \(P(x) \) of degree at most \(n \) exists with

\[
 f(x_i) = P(x_i), \quad \text{for each } i = 0, 1, \ldots, n
\]

- This polynomial is given by

\[
 P(x) = f(x_0)L_0(x) + \cdots + f(x_n)L_n(x) = \sum_{i=0}^{n} L_i(x)f(x_i)
\]

- where, for each \(i = 0, 1, \ldots, n \),

\[
 L_i(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0)(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)} = \prod_{k=0, k \neq i}^{n} \frac{x - x_k}{x_i - x_k}
\]
Using polynomials to approximate kernels

\[\phi(y_i) = \sum_{j=1}^{N} K(y_i, z_j)q_j \]

\[K_1(y, z) = \frac{1}{(1 + ||y-z||^2)} \quad \text{or} \quad K_2(y, z) = \frac{1}{(1 + ||y-z||^2)^2} \]

Let \(\tilde{\phi}(y_i) \) denote the approximation to \(\phi(y_i) \) obtained by replacing the kernel \(K \) in the above equation by its polynomial interpolant \(K_p \), that is,

\[\tilde{\phi}(y_i) = \sum_{j=1}^{N} K_p(y_i, z_j)q_j, \quad \text{for } i = 1, 2, \ldots, N \]

\[K_p(y, z) = \sum_{l=1}^{p} \sum_{j=1}^{p} K(\tilde{y}_j, \tilde{z}_l) L_{j,\tilde{y}}(y)L_{l,\tilde{z}}(z) \]

\[L_{j,\tilde{y}}(y) = \prod_{j=1, j \neq l}^{p} \frac{(y - \tilde{y}_j)}{(\tilde{y}_l - \tilde{y}_j)} \]

\[L_{l,\tilde{z}}(z) = \prod_{j=1, j \neq l}^{p} \frac{(z - \tilde{z}_j)}{(\tilde{z}_l - \tilde{z}_j)} \]
Analysis of the computation complexity

• The direct computation of $\phi(y_1), ..., \phi(y_N)$ requires $O(N^2)$ operations. In comparison, the values of $\tilde{\phi}(y_1), ..., \tilde{\phi}(y_N)$ can be computed in $O(2N \cdot p + p^2)$.

$$
\tilde{\phi}(y_i) = \sum_{j=1}^{N} K_p(y_i, z_j)q_j
$$

$$
= \sum_{j=1}^{N} \sum_{l=1}^{p} \sum_{m=1}^{p} K(\tilde{y}_l, \tilde{z}_m)L_{l,\tilde{y}}(y_i)L_{m,\tilde{z}}(z_j)q_j
$$

$$
= \sum_{l=1}^{p} L_{l,\tilde{y}}(y_i) \left(\sum_{m=1}^{p} K(\tilde{y}_l, \tilde{z}_m) \left(\sum_{j=1}^{N} L_{m,\tilde{z}}(z_j)q_j \right) \right)
$$

for $i = 1, 2, ..., N$

$O(N \cdot p)$ $O(p^2)$ $O(N \cdot p)$
An illustration of the algorithm

- In the lower intervals, the white squares denote the locations z_j and y_i, and in the upper intervals the white circles indicate the locations of the equispaced nodes \tilde{z} and \tilde{y}. The arrows illustrate how a point z_j communicates with a point y_i.
Experimental results
The computation complexity is remarkably reduced

Table 1 | Time taken for 1,000 iterations of the gradient descent phase of 2D t-SNE using BH t-SNE compared to our implementation (Flit-SNE), as compared on a 2017 Macbook Pro for a given number of points N

<table>
<thead>
<tr>
<th>N</th>
<th>BH t-SNE</th>
<th>Flit-SNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>1 min</td>
<td><1 min</td>
</tr>
<tr>
<td>100,000</td>
<td>11 min</td>
<td><1 min</td>
</tr>
<tr>
<td>500,000</td>
<td>1 h 10 min</td>
<td>3 min</td>
</tr>
<tr>
<td>1,000,000</td>
<td>3 h 9 min</td>
<td>15 min</td>
</tr>
</tbody>
</table>

See the Methods for more details.
Identifying subpopulations in a large dataset by using marker genes
Summary

Identification of the most time-consuming part in the t-SNE algorithm

\[\downarrow\]

Recognition of the computation problem as polynomial interpolation

\[\downarrow\]

Problem solved
Discussion

Find your question
Find your approach
Don’t settle

www.amazon.com
Thank you!