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• Department of Biomedical Informatics
• Harvard Medical School

• PhD in Biophysics at Harvard University (studying gene regulation 
and metabolic networks under the advisement of George Church)

• Intratumoral heterogeneity in different cancer types

• Statistical modeling of the biological tissue from single-cell 

measurements

• Automating and scaling up key functional genomics assays using 

microfluidics

Research interest:

Peter Kharchenko

Making sense of genomics data!



What is velocity?

• Velocity: a vector quantity that designates how fast and in what direction a point is moving
• Can we predict future states of a point with estimated velocity?

https://www.blazersedge.com

https://www.grc.nasa.gov/www/k-12/airplane/disvelac.html



Theoretical description of RNA velocity

• The rate equations for a single gene describes how the expected number of unspliced mRNA 
molecules 𝑢, and spliced molecules 𝑠, evolve over time

• 𝛼(𝑡) is the time-dependent rate of transcription, 𝛽(𝑡) is the rate of splicing, 𝛾(𝑡) is the rate of 
degradation

The rate equations for a single geneThe transcriptional dynamics

𝑑𝑢
𝑑𝑡

= 𝛼 𝑡 − 𝛽 𝑡 𝑢 𝑡

𝑑𝑠
𝑑𝑡
= 𝛽(𝑡)𝑢 𝑡 − 𝛾 𝑡 𝑠 𝑡



• 15–25% of reads contained unspliced intronic sequences
• Track: 10x Chromium (top), inDrop (the second), Smart-seq2 ( the third)

Dync1h1

Most of the intronic reads arise due to internal priming 
from stable positions



𝑑𝑢
𝑑𝑡

= 𝛼 − 𝑢 𝑡

𝑑𝑠
𝑑𝑡
= 𝑢 𝑡 − 𝛾𝑠 𝑡

𝑑𝑢
𝑑𝑡

= 𝛼 𝑡 − 𝛽 𝑡 𝑢 𝑡

𝑑𝑠
𝑑𝑡
= 𝛽(𝑡)𝑢 𝑡 − 𝛾 𝑡 𝑠 𝑡

𝑢 𝑡 = 𝛼 1 − 𝑒./ + 𝑢1𝑒./

𝑠 𝑡 =
𝑒./(234) 𝑒/ 234 𝛼 𝛾 − 1 + 𝑒/4 𝑢1 − 𝛼 𝛾 + 𝑒/(𝛼 − 𝛾(𝑠1 + 𝑢1 + 𝑠1𝛾))

𝛾(𝛾 − 1)

Simplify the model with assumptions

(where 𝑢 0 = 𝑢1 and 𝑠 0 = 𝑠1 are initial conditions)

• Under an assumption of constant (time-independent) rates 𝛼(𝑡) = 𝛼, 𝛾(𝑡) = 𝛾, and setting 𝛽(𝑡) = 1, the rate 
equations can be simplified

• The solution can be used to extrapolate mRNA abundance 𝑠 to a future timepoint 𝑡2



Estimate 𝜸 with the steady-state assumption

DE
D/
= 𝛼 − 𝑢 𝑡 , DF

D/
= 𝑢 𝑡 − 𝛾𝑠 𝑡

𝛾 = E
F, 𝛼 = 𝑢

DF
D/
= 0 (steady state)

• The normalized degradation rate 𝛾 varies among genes and needs to be estimated in a gene-specifc
manner

• In steady-state populations, where 𝑑𝑠/𝑑𝑡 = 0, 𝛾 of a given gene can be determined as the ratio of unspliced
to spliced mRNA molecules

• The equilibrium slope 𝛾 combines degradation and splicing rates, capturing gene-specific regulatory 
properties, the ratio of intronic and exonic lengths, and the number of internal priming sites



Estimate 𝜸 with the steady-state assumption
• Use a least squares fit of 𝑢 ∼ 𝛾 ∗ 𝑠 to estimate 𝛾 for each gene

• 𝑢 and 𝑠 are the size-normalized unspliced and spliced abundances observed for given gene across the cells
• An offset can optionally be included (baseline intronic counts that might be driven by unannotated transcripts)



Model I. Constant velocity assumption

Model II. Constant unspliced molecules assumption

Estimate 𝒔(𝒕) with two alternative assumptions

• The rate of change of the spliced molecules remains constant, i.e. that DFD/ = 𝑣 is constant

𝑠 𝑡 = 𝑠1 + 𝑣𝑡
• This assumption works well in practice as long as the time step is short

• The number of unspliced molecules stays constant, i.e. that 𝑢 𝑡 = 𝑢1. This reduces the 
problem to a single rate equation:

𝑑𝑠
𝑑𝑡
= 𝑢1 − 𝛾𝑠(𝑡)

• The solution then becomes:

𝑠 𝑡 = 𝑠1𝑒.4/ +
𝑢1
𝛾
(1 − 𝑒.4/)



Illustration of the relation between pre-mRNA and mRNA 
in a single cell

Svensson et al. (2018) Molecular Cell



Abundance of spliced (s) and unspliced (u) mRNAs for 
circadian-associated genes

• A time course of bulk RNA-seq measurements of the circadian cycle in the mouse liver
• The unspliced mRNAs are predictive of spliced mRNA at the next time point
• The dashed diagonal line shows the steady-state relationship, as predicted by 𝛾 fit



Balance between unspliced and spliced mRNAs is predictive of 
cellular state progression

• Assuming gene independence, the overall RNA velocity of the cell is a multidimensional 
vector comprised of the individual gene velocities 



• Single-cell mRNA-seq data of mouse chromaffin cells (SMART-seq2), E12.5 mice (385 cells)
• The direction of differentiation can be validated by lineage tracing

Major subpopulations of Schwann cell precursors (SCPs) 
differentiate into chromaffin cells



RNA velocity recapitulates dynamics of chromaffin cell 
differentiation

• The observed and extrapolated cell states can be jointly embedded in a common 
low-dimensional space



Velocities can be projected onto existing low-dimensional 
representations (e.g. t-SNE)

• Based the similarity of the extrapolated state to other cells in the local neighbourhood

Furlan et al. (2017) Science



Visualize the prevalent pattern of cell velocities with 
locally averaged vector fields

• Suitable for large datasets



• t-SNE plot reveals a complex manifold with multiple branches
• Phase portraits of individual genes showed specific induction and repression of 

gene expression along the manifold

Apply RNA velocity to the branching lineage of the 
developing mouse hippocampus



Selected phase portraits and fits of the equilibrium slope (𝜸) 
for the developing cells

• The residuals are the difference between observed and expected unspliced abundance, 
which closely tracks with velocity



RNA velocity shows a strong directional flow towards 
each of the main branches

• Using a Markov random-walk model on the velocity field, the terminal and root 
states could be automatically identified



Commitment to oligodendrocyte fate Fate decision of neuroblasts

Visualization of single-step transition probabilities from 
two starting cells (red) to neighbouring cells

• The detailed, single-cell view of a branching lineage allowed us to interrogate fate choice



• Prox1 is required for the formation of granule neurons and that, when Prox1 is deleted, 
neuroblasts instead adopt a pyramidal neuron fate

Two neighbouring cells with different fates are distinguished by
activation of Prox1

Transition probability



Summary

• Across diverse scRNA-seq pipelines, 15–25% of reads originated from priming in the 

intronic regions of unspliced molecules

• RNA velocity leverages nascent unspliced RNA to deduce the future transcriptional 

states of cells, thus providing insights into developmental trajectories

• RNA velocity showed the expected developmental trajectory and helped deduce

potentially key developmental transition genes that are responsible for driving cell 

fate choices
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