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What is velocity?

* Velocity: a vector quantity that designates how fast and in what direction a point is moving
* Can we predict future states of a point with estimated velocity?
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Theoretical description of RNA velocity

* The rate equations for a single gene describes how the expected number of unspliced mRNA
molecules u, and spliced molecules s, evolve over time

* a(t) is the time-dependent rate of transcription, $(t) is the rate of splicing, y(t) is the rate of
degradation
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Most of the intronic reads arise due to internal priming
from stable positions

* 15-25% of reads contained unspliced intronic sequences
e Track: 10x Chromium (top), inDrop (the second), Smart-seg?2 ( the third)
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Simplify the model with assumptions

* Under an assumption of constant (time-independent) rates a(t) = a, y(t) = ¥, and setting [(t) = 1, the rate
equations can be simplified

* The solution can be used to extrapolate mRNA abundance s to a future timepoint t4
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Estimate y with the steady-state assumption

* The normalized degradation rate y varies among genes and needs to be estimated in a gene-specifc
manner

* In steady-state populations, where ds/dt = 0, y of a given gene can be determined as the ratio of unspliced
to spliced mRNA molecules

* The equilibrium slope y combines degradation and splicing rates, capturing gene-specific regulatory
properties, the ratio of intronic and exonic lengths, and the number of internal priming sites
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Estimate y with the steady-state assumption

e Use aleast squares fit of u ~ Y * s to estimate y for each gene
 wuand s are the size-normalized unspliced and spliced abundances observed for given gene across the cells

* An offset can optionally be included (baseline intronic counts that might be driven by unannotated transcripts)
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Estimate s(t) with two alternative assumptions

Model I. Constant velocity assumption

: : : d :
* The rate of change of the spliced molecules remains constant, i.e. that d—i = v is constant

s(t) =sy + vt

* This assumption works well in practice as long as the time step is short

Model Il. Constant unspliced molecules assumption

* The number of unspliced molecules stays constant, i.e. that u(t) = ug. This reduces the
problem to a single rate equation:

ds ©)
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* The solution then becomes:
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lllustration of the relation between pre-mRNA and mRNA
in a single cell

Gene A Downregulation, pre-mRNA pool refills slower than mRNA degradation.
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Gene B Steady, pre-mRNA pool keeps up with mRNA degradation.

DNA ap
—>

Transcription

Gene C Upregulation, pre-mRNA pool grows faster than mRNA degradation.
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Abundance of spliced (s) and unspliced (u) mMRNAs for
circadian-associated genes

* Atime course of bulk RNA-seq measurements of the circadian cycle in the mouse liver
* The unspliced mRNAs are predictive of spliced mRNA at the next time point
* The dashed diagonal line shows the steady-state relationship, as predicted by y fit
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Balance between unspliced and spliced mRNAs is predictive of
cellular state progression

* Assuming gene independence, the overall RNA velocity of the cell is a multidimensional

vector comprised of the individual gene velocities
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Major subpopulations of Schwann cell precursors (SCPs)

differentiate into chromaffin cells

* Single-cell mMRNA-seq data of mouse chromaffin cells (SMART-seq2), E12.5 mice (385 cells)

* The direction of differentiation can be validated by lineage tracing
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RNA velocity recapitulates dynamics of chromaffin cell
differentiation

 The observed and extrapolated cell states can be jointly embedded in a common
low-dimensional space
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Velocities can be projected onto existing low-dimensional

representations (e.g. t-SNE)

Based the similarity of the extrapolated state to other cells in the local neighbourhood
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Visualize the prevalent pattern of cell velocities with
locally averaged vector fields

e Suitable for large datasets




Apply RNA velocity to the branching lineage of the

developing mouse hippocampus

* t-SNE plot reveals a complex manifold with multiple branches
* Phase portraits of individual genes showed specific induction and repression of

gene expression along the manifold
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Selected phase portraits and fits of the equilibrium slope (y)

for the developing cells

The residuals are the difference between observed and expected unspliced abundance,
which closely tracks with velocity
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RNA velocity shows a strong directional flow towards
each of the main branches

* Using a Markov random-walk model on the velocity field, the terminal and root
states could be automatically identified
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Visualization of single-step transition probabilities from
two starting cells (red) to neighbouring cells

* The detailed, single-cell view of a branching lineage allowed us to interrogate fate choice
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Two neighbouring cells with different fates are distinguished by
activation of Prox1

* Prox1is required for the formation of granule neurons and that, when Prox1 is deleted,
neuroblasts instead adopt a pyramidal neuron fate
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Summary

* Across diverse scRNA-seq pipelines, 15—-25% of reads originated from priming in the

intronic regions of unspliced molecules

* RNA velocity leverages nascent unspliced RNA to deduce the future transcriptional

states of cells, thus providing insights into developmental trajectories

* RNA velocity showed the expected developmental trajectory and helped deduce

potentially key developmental transition genes that are responsible for driving cell

fate choices
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