piaso.plotting package#
- piaso.plotting.plot_features_violin(adata, feature_list, groupby: str | None = None, use_raw: bool | None = None, layer: str | None = None, width_single: float = 14.0, height_single: float = 2.0, size: float = 0.1, show_grid: bool = True, show_figure: bool = True, save: str | None = None)#
Plots a violin plot for each feature specified in feature_list using the Scanpy library (sc.pl.violin).
- Parameters:
adata (anndata.AnnData) – The annotated data matrix of shape n_obs × n_vars. Rows correspond to cells and columns to genes.
feature_list (List[str]) – A list of strings denoting the feature names (gene names and cell metrics, e.g., number of genes detected and doublet score) to be visualized.
groupby (str, optional) – A key in the observation DataFrame (adata.obs) used to group data points in the violin plot. Default is None, which means no grouping is applied.
use_raw (bool, optional) – A boolean indicating whether to use the raw attribute of adata. If True, uses raw data if available.
layer (str, optional) – A key from the layers of adata. If provided, the specified layer is used for visualization.
width_single (float, optional) – The width of each subplot. Default is 14.0.
height_single (float, optional) – The height of each subplot. Default is 2.0.
size (float, optional) – The size of the jitter points in the violin plot. Default is 0.1.
show_grid (bool, optional) – Whether to display grid lines in the plots. Default is True (grid lines shown).
show_figure (bool, optional) – Whether to show the figure (plt.show()). Default is True.
save (str, optional) – If provided, the path where the plot should be saved, e.g., ./violin_plot_by_piaso.pdf. If None, the plot is not saved to a file.
- Returns:
This function does not return any value but visualizes the violin plots and optionally saves the figure.
- Return type:
None
- piaso.plotting.plot_embeddings_split(adata, color, splitby, ncol: int = None, dpi: int = 80, col_size: int = 5, row_size: int = 5, vmax: float = None, vmin: float = None, show_figure: bool = True, save: bool = None, layer: str = None, basis: str = 'X_umap', fix_coordinate_ratio: bool = True, show_axis_ticks: bool = False, margin_ratio: float = 0.05, legend_fontsize: int = 10, legend_fontoutline: int = 2, legend_loc: str = 'right margin', legend_marker_size: float = 1.6, x_min=None, x_max=None, y_min=None, y_max=None, **kwargs)#
Plot cell embeddings side by side based on a categorical variable.
The plots are split by a specified categorical variable, with each unique category producing a separate subplot. Data points in each subplot are colored according to the color variable.
- Parameters:
adata (AnnData) – An AnnData object.
color (str) – Used to specify a gene name to plot, or a key in adata.obs used to assign colors to the cells in the embedding plot.
splitby (str) – Key in adata.obs used to split the dataset into multiple panels. Each unique value under this key will result in a separate subplot.
ncol (int or None, optional (default: None)) – If specified, defines the number of columns per row. If None, the number of columns is computed as the ceiling of n divided by the integer square root of n.
dpi (int, optional (default: 80)) – Dots per inch (DPI) setting for the figure.
col_size (int, optional (default=5)) – Width (in inches) of each subplot column.
row_size (int, optional (default=5)) – Height (in inches) of each subplot row.
vmax (float or None, optional (default=None)) – Maximum value for the color scale. If not provided, the upper limit is determined automatically.
vmin (float or None, optional (default=None)) – Minimum value for the color scale. If not provided, the lower limit is determined automatically.
show_figure (bool, optional (default=True)) – Whether to display the figure after plotting.
save (str or None, optional (default=None)) – File path to save the resulting figure. If None, the figure will not be saved.
layer (str or None, optional (default=None)) – If specified, the name of the layer in adata.layers from which to obtain the gene expression values.
basis (str, optional (default='X_umap')) – Key in adata.obsm that contains the embedding coordinates (e.g., X_umap or X_pca).
fix_coordinate_ratio (bool, optional (default=True)) – If True, the aspect ratio of each subplot is fixed so that the x- and y-axes are scaled equally.
show_axis_ticks (bool, optional (default=False)) – Whether to display axis ticks and tick labels on the plots.
margin_ratio (float, optional (default=0.05)) – Margin ratio for both the x-axis and y-axis limits, relative to the range of the data. This provides additional spacing around the plotted points.
legend_fontsize (int, optional (default=9)) – Font size in pt.
legend_fontoutline (int, optional (default=2)) – Line width of the legend font outline in pt.
legend_loc (str, optional (default='right margin')) – Location of legend, defaults to ‘right margin’.
legend_marker_size (float, optional (default=1.5)) – Scaling factor for legend markers (dot size).
x_min (float or None, optional (default=None)) – Minimum limit for the x-axis. If None, the limit is computed automatically based on the data.
x_max (float or None, optional (default=None)) – Maximum limit for the x-axis. If None, the limit is computed automatically based on the data.
y_min (float or None, optional (default=None)) – Minimum limit for the y-axis. If None, the limit is computed automatically based on the data.
y_max (float or None, optional (default=None)) – Maximum limit for the y-axis. If None, the limit is computed automatically based on the data.
**kwargs (dict) – Additional keyword arguments passed to the scanpy.pl.embedding function.
- Return type:
None.
Examples
>>> import scanpy as sc >>> import piaso >>> adata = sc.datasets.pbmc3k() # Load an example dataset >>> # Plot embeddings colored by a gene expression value and split by clusters >>> piaso.pl.plot_embeddings_split(adata, color='CDK9', splitby='louvain', col_size=6, row_size=6) >>> # Save the figure to a file >>> piaso.pl.plot_embeddings_split(adata, color='CDK9', splitby='louvain', save='./CST3_embeddingsSplit.pdf')
- piaso.plotting.createCustomCmapFromHex(hex_colors)#
Create a custom colormap from a list of hex colors. This function converts a sequence of hex colors into an RGB-based colormap that can be used for visualizations in Matplotlib.
- Parameters:
hex_colors (list of str) – A list of color codes in hexadecimal format (e.g., [‘#faefef’, ‘#e8aebc’, ‘#d96998’, ‘#b1257a’, ‘#572266’]).
- Returns:
A Matplotlib LinearSegmentedColormap object that can be applied to plots using the cmap parameter.
- Return type:
LinearSegmentedColormap
Example
>>> import matplotlib.pyplot as plt >>> import numpy as np >>> import piaso >>> # Define custom hex colors >>> hex_colors = ['#faefef', '#e8aebc', '#d96998', '#b1257a', '#572266'] >>> >>> # Create the colormap >>> c_color4 = piaso.pl.color.createCustomCmapFromHex(hex_colors) >>> >>> # Generate a gradient to visualize the colormap >>> gradient = np.linspace(0, 1, 256).reshape(1, -1) >>> >>> # Display the colormap >>> plt.figure(figsize=(6, 1)) >>> plt.imshow(gradient, aspect="auto", cmap=c_color4) >>> plt.axis("off") >>> plt.show()